

170-TP-606-002

HDF-EOS Library Users Guide
for the ECS Project

Volume 2: Function Reference Guide

Technical Paper

April 2003

Prepared Under Contract NAS5-60000

RESPONSIBLE ENGINEER

Abe Taaheri /s/ 4/3/03
Abe Taaheri, Shen Zhao Date
Xin-Min Hua, Ray Milburn, and Larry Klein
EOSDIS Core System Project

SUBMITTED BY

Art Cohen /s/ 4/3/03
Art Cohen, Director of Development Date
EOSDIS Core System Project

Raytheon Company
Upper Marlboro, Maryland

This page intentionally left blank.

 iii 170-TP-606-002

Preface

This document is a Users Guide for HDF-EOS (Hierarchical Data Format - Earth Observing
System) library tools. HDF is the scientific data format standard selected by NASA as the
baseline standard for EOS. This Users Guide accompanies Version 2 software, which is available
to the user community on the EDHS1 server. These library is aimed at EOS data producers and
consumers, who will develop their data into increasingly higher order products. These products
range from calibrated Level 1 to Level 4 model data. The primary use of the HDF-EOS library
will be to create structures for associating geolocation data with their associated science data.
This association is specified by producers through use of the supplied library. Most EOS data
products which have been identified, fall into categories of grid, point or swath structures, which
are implemented in the current version of the library. Services based on geolocation information
will be built on HDF-EOS structures. Producers of products not covered by these structures, e.g.
non-geolocated data, can use the standard HDF libraries.

In the ECS (EOS Core System) production system, the HDF-EOS library will be used in
conjunction with SDP (Science Data Processing) Toolkit software. The primary tools used in
conjunction with HDF-EOS library will be those for metadata handling, process control and
status message handling. Metadata tools will be used to write ECS inventory and granule
specific metadata into HDF-EOS files, while the process control tools will be used to access
physical file handles used by the HDF tools. (SDP Toolkit Users Guide for the ECS Project,
February, 2000, 333-CD-510-001).

HDF-EOS is an extension of NCSA (National Center for Supercomputing Applications) HDF
and uses HDF library calls as an underlying basis. Version 4.1r3 of HDF is used. The library
tools are written in the C language and a Fortran interface is provided. The current version
contains software for creating, accessing and manipulating Grid, Point and Swath structures.
This document includes overviews of the interfaces, and code examples. EOSView, the HDF-
EOS viewing tool, has been revised to accommodate the current version of the library.

Technical Points of Contact within EOS are:

Larry Klein, larry@eos.hitc.com
David Wynne, davidw@eos.hitc.com
Abe Taaheri, ataaheri@eos.hitc.com

Alex Muslimov, amuslivo@eos.hitc.com

An email address has been provided for user help:

pgstlkit@eos.hitc.com

 iv 170-TP-606-002

Any questions should be addressed to:

Data Management Office
The ECS Project Office
Raytheon Systems Company
1616 McCormick Drive
Upper Marlboro, MD 20774-5301

 v 170-TP-606-002

Abstract

This document will serve as the user’s guide to the HDF-EOS file access library. HDF refers to
the scientific data format standard selected by NASA as the baseline standard for EOS, and
HDF-EOS refers to EOS conventions for using HDF. This document will provide information on
the use of the three interfaces included in HDF-EOS - Point, Swath, and Grid - including
overviews of the interfaces, and code examples. This document should be suitable for use by
data producers and data users alike.

Keywords: HDF-EOS, Metadata, Standard Data Format, Standard Data Product, Disk Format,
Point, Grid, Swath, Projection, Array, Browse

 vi 170-TP-606-002

This page intentionally left blank

 vii 170-TP-606-002

Change Information Page

List of Effective Pages

Page Number Issue

Title Submitted as Final
iii through x Submitted as Final

1-1 through 1-14 Submitted as Final
2-1 through 2-178 Submitted as Final
AB-1 through AB-4 Submitted as Final

Document History

Document Number Status/Issue Publication Date CCR Number

170-TP-606-001 Submitted as Final December 2002
170-TP-606-002 Submitted as Final April 2003 03-0234

 viii 170-TP-606-002

This page intentionally left blank.

 ix 170-TP-606-002

Contents

Preface

Abstract

1. Introduction

1.1 Purpose.. 1-1

1.2 Organization... 1-1

1.3 Point Data ... 1-1

1.3.1 PT API Routines .. 1-1
1.3.2 List of PT API Routines... 1-2

1.4 Swath Data ... 1-3

1.4.1 The Swath Data Interface .. 1-3
1.4.2 List of SW API Routines ... 1-3

1.5 Grid Data .. 1-5

1.5.1 The Grid Data Interface ... 1-5
1.5.2 List of Grid API ROUTINES .. 1-5

1.6 GCTP Usage .. 1-7

1.6.1 GCTP Projection Codes... 1-7
1.6.2 UTM Zone Codes .. 1-8
1.6.3 GCTP Spheroid Codes... 1-8
1.6.4 GCTP Projection Parameters ... 1-9

2. Function Reference

2.1 Format .. 2-1

2.1.1 Point Interface Functions ... 2-1
2.1.2 Swath Interface Functions ... 2-42
2.1.3 Grid Interface Functions .. 2-106

 x 170-TP-606-002

2.1.4 HDF-EOS Utility Routines .. 2-171

List of Tables

1-1 Summary of the Point Interface ... 1-2

1-2 Summary of the Swath Interface.. 1-4

1-3 Summary of the Grid Interface .. 1-6

1-4 Projection Transformation Package Projection Parameters... 1-9

Abbreviations and Acronyms

 1-1 170-TP-606-002

1. Introduction

1.1 Purpose
The HDF-EOS Software Reference Guide for the ECS Project was prepared under the Earth
Observing System Data and Information System (EOSDIS) Core System (ECS), Contract
(NAS5-60000).

This software reference guide is intended for use by anyone who wishes to use the HDF-EOS
library to create or read EOS data products. Users of this document will include EOS instrument
team science software developers and data product designers, DAAC personnel, and end users of
EOS data products such as scientists and researchers.

1.2 Organization
This paper is organized as follows:

• Section 1 Introduction - Presents Scope and Purpose of this document
• Section 2 Function Reference
• Abbreviations and Acronyms

1.3 Point Data
The PT (Point) interface consists of routines for storing, retrieving, and manipulating data in
point data sets. This interface is designed to support data that has associated geolocation
information, but is not organized in any well defined spatial or temporal way. See the Users’
Guide, Volume 1 that accompanies this document for more information.

1.3.1 PT API Routines
All C routine names in the point data interface have the prefix “PT” and the equivalent
FORTRAN routine names are prefixed by “pt.” The PT routines are classified into the following
categories:

• Access routines initialize and terminate access to the PT interface and point data sets
(including opening and closing files).

• Definition routines allow the user to set key features of a point data set.
• Basic I/O routines read and write data and metadata to a point data set.
• Index I/O routines read and write information which links two tables in a point data set.
• Inquiry routines return information about data contained in a point data set.
• Subset routines allow reading of data from a specified geographic region.

 1-2 170-TP-606-002

1.3.2 List of PT API Routines
The PT function calls are listed below in Table 1-1 and are described in detail in Section 2 of this
document. The listing in Section 2 is in alphabetical order.

Table 1-1. Summary of the Point Interface
 Routine Name Page

Category C FORTRAN Description Nos.
 PTopen ptopen creates a new file or opens an existing one 2-29

 PTcreate ptcreate creates a new point data set and returns a handle 2-6
Access PTattach ptattach attaches to an existing point data set 2-2

 PTdetach ptdetach releases a point data set and frees memory 2-15
 PTclose ptclose closes the HDF-EOS file and deactivates the point

interface
2-5

Definition PTdeflevel ptdeflev defines a level within the point data set 2-8
 Ptdeflinkage ptdeflink defines link field to use between two levels 2-10
 Ptdefvrtregion ptdefvrtreg defines a vertical subset region 2-13
 Ptwritelevel ptwrlev writes (appends) full records to a level 2-42
 Ptreadlevel ptrdlev reads data from the specified fields and records of a

level
2-33

Basic I/O Ptupdatelevel ptuplev updates the specified fields and records of a level 2-38
 Ptwriteattr ptwrattr creates or updates an attribute of the point data set 2-40
 Ptreadattr ptrdattr reads existing attribute of point data set 2-32
 Ptnlevels ptnlevs returns the number of levels in a point data set 2-27
 Ptnrecs ptnrecs returns the number of records in a level 2-28
 Ptnfields ptnflds returns number of fields defined in a level 2-26
 Ptlevelinfo ptlevinfo returns information about a given level 2-25
 Ptlevelindx ptlevidx returns index number for a named level 2-24

Inquiry Ptbcklinkinfo ptblinkinfo returns link field to previous level 2-4
 Ptfwdlinkinfo ptflinkinfo returns link field to following level 2-18
 Ptgetlevelname ptgetlevname returns level name given level number 2-19
 Ptsizeof ptsizeof returns size in bytes for specified fields in a point 2-37
 Ptattrinfo ptattrinfo returns information about point attributes 2-3
 Ptinqattrs ptinqattrs retrieves number and names of attributes defined 2-22
 Ptinqpoint ptinqpoint retrieves number and names of points in file 2-23

Utility Ptgetrecnums ptgetrecnums returns corresponding record numbers in a related
level

2-20

 Ptdefboxregion ptdefboxreg define region of interest by latitude/longitude 2-7
 Ptregioninfo ptreginfo returns information about defined region 2-35
 Ptregionrecs ptregrecs returns # of records and record #s within region 2-36
 Ptextractregion ptextreg read a region of interest from a set of fields in a single

level
2-17

Subset PTdeftimeperiod ptdeftmeper define time period of interest 2-11
 PTperiodinfo ptperinfo returns information about defined time period 2-30
 PTperiodrecs ptperrecs returns # of records and record #s within time period 2-31

 PTextractperiod ptextper read a time period from a set of fields in a single level 2-16

 1-3 170-TP-606-002

1.4 Swath Data
The SW (Swath) interface consists of routines for storing, retrieving, and manipulating data in
swath data sets. This interface is tailored to support time-ordered data such as satellite swaths
(which consist of a time-ordered series of scanlines), or profilers (which consist of a time-
ordered series of profiles). See the Users’ Guide, Volume 1 that accompanies this document for
more information.

1.4.1 The Swath Data Interface
All C routine names in the swath data interface have the prefix “SW” and the equivalent
FORTRAN routine names are prefixed by “sw.” The SW routines are classified into the
following categories:

• Access routines initialize and terminate access to the SW interface and swath data sets
(including opening and closing files).

• Definition routines allow the user to set key features of a swath data set.
• Basic I/O routines read and write data and metadata to a swath data set.
• Inquiry routines return information about data contained in a swath data set.
• Subset routines allow reading of data from a specified geographic region.

1.4.2 List of SW API Routines

The SW function calls are listed below in Table 1-2 and are described in detail in Section 2 of
this document. The listing in Section 2 is in alphabetical order.

 1-4 170-TP-606-002

Table 1-2. Summary of the Swath Interface (1 of 2)
 Routine Name Page

Category C FORTRAN Description Nos.
 SWopen swopen opens or creates HDF file in order to create, read, or

write a swath
2-86

 SWcreate swcreate creates a swath within the file 2-47
Access SWattach swattach attaches to an existing swath within the file 2-43

 SWdetach swdetach detaches from swath interface 2-67
 SWclose swclose closes file 2-45
 SWdefdim swdefdim defines a new dimension within the swath 2-54
 SWdefdimmap swdefmap defines the mapping between the geolocation and

data dimensions
2-56

SWdefidxmap swdefimap defines a non-regular mapping between the
geolocation and data dimension

2-60

Definition SWdefgeofield swdefgfld defines a new geolocation field within the swath 2-58
 SWdefdatafield swdefdfld defines a new data field within the swath 2-52
 SWdefcomp swdefcomp defines a field compression scheme 2-50
 SWwritegeometa swwrgmeta writes field metadata for an existing swath

geolocation field
2-105

 SWwritedatameta swwrdmeta writes field metadata for an existing swath data field 2-101
 SWwritefield swwrfld writes data to a swath field 2-102
 SWreadfield swrdfld reads data from a swath field. 2-90

Basic I/O SWwriteattr swwrattr writes/updates attribute in a swath 2-99
 SWreadattr swrdattr reads attribute from a swath 2-89
 SWsetfillvalue swsetfill sets fill value for the specified field 2-96
 SWgetfillvalue swgetfill retrieves fill value for the specified field 2-74
 SWinqdims swinqdims retrieves information about dimensions defined in

swath
2-79

 SWinqmaps swinqmaps retrieves information about the geolocation relations
defined

2-82

 SWinqidxmaps swinqimaps retrieves information about the indexed
geolocation/data mappings defined

2-81

 SWinqgeofields swinqgflds retrieves information about the geolocation fields
defined

2-80

 SWinqdatafields swinqdflds retrieves information about the data fields defined 2-78
 SWinqattrs swinqattrs retrieves number and names of attributes defined 2-77

Inquiry SWnentries swnentries returns number of entries and descriptive string buffer
size for a specified entity

2-85

 SWdiminfo swdiminfo retrieve size of specified dimension 2-68
 SWmapinfo swmapinfo retrieve offset and increment of specified geolocation

mapping
2-84

 SWidxmapinfo swimapinfo retrieve offset and increment of specified geolocation
mapping

2-76

 SWattrinfo swattrinfo returns information about swath attributes 2-44
 SWfieldinfo swfldinfo retrieve information about a specific geolocation or

data field
2-72

 SWcompinfo swcompinfo retrieve compression information about a field 2-46
 SWinqswath swinqswath retrieves number and names of swaths in file 2-83
 SWregionindex swregidx Returns information about the swath region ID 2-92
 SWupdateidxmap swupimap update map index for a specified region 2-97

 1-5 170-TP-606-002

Table 1-2. Summary of the Swath Interface (2 of 2)
 Routine Name Page

Category C FORTRAN Description Nos.
 SWgeomapinfo swgmapinfo Retrieve type of dimension mapping for a dimension 2-75
 SWdefboxregion swdefboxreg define region of interest by latitude/longitude 2-48
 SWregioninfo swreginfo returns information about defined region 2-94
 SWextractregion swextreg read a region of interest from a field 2-71

Subset SWdeftimeperiod swdeftmeper define a time period of interest 2-62
 SWperiodinfo swperinfo retuns information about a defined time period 2-87
 SWextractperiod swextper extract a defined time period 2-70
 SWdefvrtregion swdefvrtreg define a region of interest by vertical field 2-64
 SWdupregion swdupreg duplicate a region or time period 2-69

1.5 Grid Data
The GD (Grid) interface consists of routines for storing, retrieving, and manipulating data in grid
data sets. This interface is designed to support data that has been stored in a rectilinear array
based on a well defined and explicitly supported projection. See the Users’ Guide, Volume 1 that
accompanies this document for more details.

1.5.1 The Grid Data Interface

All C routine names in the grid data interface have the prefix “GD” and the equivalent
FORTRAN routine names are prefixed by “gd.” The GD routines are classified into the
following categories:

• Access routines initialize and terminate access to the GD interface and grid data sets
(including opening and closing files).

• Definition routines allow the user to set key features of a grid data set.
• Basic I/O routines read and write data and metadata to a grid data set.
• Inquiry routines return information about data contained in a grid data set.
• Subset routines allow reading of data from a specified geographic region.

1.5.2 List of Grid API ROUTINES
The GD function calls are listed below in Table 1-3 and are described in detail in Section 2 of
this document. The listing in Section 2 is in alphabetical order.

 1-6 170-TP-606-002

Table 1-3. Summary of the Grid Interface (1 of 2)
 Routine Name Page

Category C FORTRAN Description Nos.
 GDopen gdopen creates a new file or opens an existing one 2-151
 GDcreate gdcreate creates a new grid in the file 2-113

Access GDattach gdattach attaches to a grid 2-107
 GDdetach gddetach detaches from grid interface 2-132
 GDclose gdclose closes file 2-111
 GDdeforigin gddeforigin defines origin of grid 2-122
 GDdefdim gddefdim defines dimensions for a grid 2-119
 GDdefproj gddefproj defines projection of grid 2-124

Definition GDdefpixreg gddefpixreg defines pixel registration within grid cell 2-123
 GDdeffield gddeffld defines data fields to be stored in a grid 2-120
 GDdefcomp gddefcomp defines a field compression scheme 2-117
 GDblkSOMoffset none This is a special function for SOM MISR data. Write

block SOM offset values.
2-109

 GDsettilecomp none This routine was added as a fix to a bug in HDF-EOS.
The current method of implementation didn’t allow the
user to have a field with fill values and use tiling and
compression. This function allows the user to access
all of these features.

2-163

 GDwritefieldmeta gdwrmeta writes metadata for field already existing in file 2-169
 GDwritefield gdwrfld writes data to a grid field. 2-167
 GDreadfield gdrdfld reads data from a grid field 2-156

Basic I/O GDwriteattr gdwrattr writes/updates attribute in a grid. 2-165
 GDreadattr gdrdattr reads attribute from a grid 2-155
 GDsetfillvalue gdsetfill sets fill value for the specified field 2-161
 GDgetfillvalue gdgetfill retrieves fill value for the specified field 2-138
 GDinqdims gdinqdims retrieves information about dimensions defined in grid 2-145
 GDinqfields gdinqdflds retrieves information about the data fields defined in

grid
2-146

 GDinqattrs gdinqattrs retrieves number and names of attributes defined 2-144
 GDnentries gdnentries returns number of entries and descriptive string buffer

size for a specified entity
2-150

 GDgridinfo gdgridinfo returns dimensions of grid and X-Y coordinates of
corners

2-143

Inquiry GDprojinfo gdprojinfo returns all GCTP projection information 2-154
 GDdiminfo gddiminfo retrieves size of specified dimension. 2-133
 GDcompinfo gdcompinfo retrieve compression information about a field 2-112
 GDfieldinfo gdfldinfo retrieves information about a specific geolocation or

data field in the grid
2-136

 GDinqgrid gdinqgrid retrieves number and names of grids in file 2-147
 GDattrinfo gdattrinfo returns information about grid attributes 2-108
 GDorigininfo gdorginfo return information about grid origin 2-152
 GDpixreginfo gdpreginfo return pixel registration information for given grid 2-153
 GDdefboxregion gddefboxreg define region of interest by latitude/longitude 2-116
 GDregioninfo gdreginfo returns information about a defined region 2-159

 1-7 170-TP-606-002

Table 1-3. Summary of the Grid Interface (2 of 2)
 Routine Name Page

Category C FORTRAN Description Nos.
 GDextractregion gdextrreg read a region of interest from a field 2-135

Subset GDdeftimeperiod gddeftmeper define a time period of interest 2-128
 GDdefvrtregion gddefvrtreg define a region of interest by vertical field 2-130
 GDgetpixels gdgetpix get row/columns for lon/lat pairs 2-139
 GDgetpixvalues gdgetpixval get field values for specified pixels 2-141
 GDinterpolate gdinterpolate perform bilinear interpolation on a grid field 2-148
 GDdupregion gddupreg duplicate a region or time period 2-134
 GDdeftile gddeftle define a tiling scheme 2-126
 GDtileinfo gdtleinfo returns information about tiling for a field 2-164

Tiling GDsettilecache gdsettleche set tiling cache parameters 2-162
 GDreadtile gdrdtle read data from a single tile 2-158
 GDwritetile gdwrtile write data to a single tile 2-170

Utility GDrs2ll gdrs2ll convert (r,s) coordinates to (lon,lat) for EASE grid 2-176

1.6 GCTP Usage
The HDF-EOS Grid API uses the U.S. Geological Survey General Cartographic Transformation
Package (GCTP) to define and subset grid structures. This section described codes used by the
package.

1.6.1 GCTP Projection Codes
The following GCTP projection codes are used in the grid API described in Section 7 below:

GCTP_GEO (0) Geographic
GCTP_UTM (1) Universal Transverse Mercator
GCTP_LAMCC (4) Lambert Conformal Conic
GCTP_PS (6) Polar Stereographic
GCTP_POLYC (7) Polyconic
GCTP_TM (9) Transverse Mercator
GCTP_LAMAZ (11) Lambert Azimuthal Equal Area
GCTP_HOM (20) Hotine Oblique Mercator
GCTP_SOM (22) Space Oblique Mercator
GCTP_GOOD (24) Interrupted Goode Homolosine
GCTP_ISINUS1 (31) Integerized Sinusoidal Projection*
GCTP_ISINUS (99) Intergerized Sinusoidal Projection*
GCTP_BCEA (98) Behrmann Cylindrical Equal-Area (for EASE grid)**

* The Intergerized Sinusoidal Projection is not part of the original GCTP package. It has been
added by ECS. See Level-3 SeaWiFS Data Products: Spatial and Temporal Binning Algorithms.
Additional references are provided in Section 2.

** The Behrmann Cylindrical Equal-Area Projection was not part of the original GCTP package.
It has been added by ECS. See Notes for section 1.6.4.

Note that other projections supported by GCTP will be adapted for HDF-EOS Version 2.9 as
new user requirements are surfaced. For further details on the GCTP projection package, please

 1-8 170-TP-606-002

refer to Section 6.3.4 and Appendix G of the SDP Toolkit Users Guide for the ECS Project,
March, 2002, (333-CD-605).

1.6.2 UTM Zone Codes
The Universal Transverse Mercator (UTM) Coordinate System uses zone codes instead of
specific projection parameters. The table that follows lists UTM zone codes as used by GCTP
Projection Transformation Package. C.M. is Central Meridian

 Zone C.M. Range Zone C.M. Range
 01 177W 180W-174W 31 003E 000E-006E
 02 171W 174W-168W 32 009E 006E-012E
 03 165W 168W-162W 33 015E 012E-018E
 04 159W 162W-156W 34 021E 018E-024E
 05 153W 156W-150W 35 027E 024E-030E
 06 147W 150W-144W 36 033E 030E-036E
 07 141W 144W-138W 37 039E 036E-042E
 08 135W 138W-132W 38 045E 042E-048E
 09 129W 132W-126W 39 051E 048E-054E
 10 123W 126W-120W 40 057E 054E-060E
 11 117W 120W-114W 41 063E 060E-066E
 12 111W 114W-108W 42 069E 066E-072E
 13 105W 108W-102W 43 075E 072E-078E
 14 099W 102W-096W 44 081E 078E-084E
 15 093W 096W-090W 45 087E 084E-090E
 16 087W 090W-084W 46 093E 090E-096E
 17 081W 084W-078W 47 099E 096E-102E
 18 075W 078W-072W 48 105E 102E-108E
 19 069W 072W-066W 49 111E 108E-114E
 20 063W 066W-060W 50 117E 114E-120E
 21 057W 060W-054W 51 123E 120E-126E
 22 051W 054W-048W 52 129E 126E-132E
 23 045W 048W-042W 53 135E 132E-138E
 24 039W 042W-036W 54 141E 138E-144E
 25 033W 036W-030W 55 147E 144E-150E
 26 027W 030W-024W 56 153E 150E-156E
 27 021W 024W-018W 57 159E 156E-162E
 28 015W 018W-012W 58 165E 162E-168E
 29 009W 012W-006W 59 171E 168E-174E
 30 003W 006W-000E 60 177E 174E-180W

1.6.3 GCTP Spheroid Codes
Clarke 1866 (default) (0)
Clarke 1880 (1)
Bessel (2)
International 1967 (3)
International 1909 (4)
WGS 72 (5)
Everest (6)
WGS 66 (7)
GRS 1980 (8)

 1-9 170-TP-606-002

Airy (9)
Modified Airy (10)
Modified Everest (11)
WGS 84 (12)
Southeast Asia (13)
Austrailian National (14)
Krassovsky (15)
Hough (16)
Mercury 1960 (17)
Modified Mercury 1968 (18)
Sphere of Radius 6370997m (19)

1.6.4 GCTP Projection Parameters

Table 1-4. Projection Transformation Package Projection Parameters (1 of 2)
 Array Element

Code & Projection Id 1 2 3 4 5 6 7 8

0 Geographic

1 U T M Lon/Z Lat/Z

4 Lambert Conformal C Smajor Sminor STDPR1 STDPR2 CentMer OriginLat FE FN

6 Polar Stereographic Smajor Sminor LongPol TrueScale FE FN

7 Polyconic Smajor Sminor CentMer OriginLat FE FN

9 Transverse Mercator Smajor Sminor Factor CentMer OriginLat FE FN

11 Lambert Azimuthal Sphere CentLon CenterLat FE FN

20 Hotin Oblique Merc A Smajor Sminor Factor OriginLat FE FN

20 Hotin Oblique Merc B Smajor Sminor Factor AziAng AzmthPt OriginLat FE FN

22 Space Oblique Merc A Smajor Sminor IncAng AscLong FE FN

22 Space Oblique Merc B Smajor Sminor Satnum Path FE FN

24 Interrupted Goode Sphere

31 & 99 Integerized Sinusoidal Sphere CentMer FE FN

98 BCEA Utilized by EASE
Grid (see Notes)

Smajor Sminor CentMer TrueScale FE FN

 1-10 170-TP-606-002

Table 1-4. Projection Transformation Package Projection Parameters (2 of 2)
 Array Element

Code & Projection Id 9 10 11 12 13

0 Geographic

1 U T M

4 Lambert Conformal C

6 Polar Stereographic

7 Polyconic

9 Transverse Mercator

11 Lambert Azimuthal

20 Hotin Oblique Merc A Long1 Lat1 Long2 Lat2 zero

20 Hotin Oblique Merc B one

22 Space Oblique Merc A PSRev SRat PFlag HDF-EOS zero

22 Space Oblique Merc B HDF-EOS one

24 Interrupted Goode

31 & 99 Integerized
Sinusoidal

NZone RFlag

98 BCEA Utilized by EASE
Grid (see Notes)

Where,

Lon/Z Longitude of any point in the UTM zone or zero. If zero, a zone code must be
specified.

Lat/Z Latitude of any point in the UTM zone or zero. If zero, a zone code must be
specified.

Smajor Semi-major axis of ellipsoid. If zero, Clarke 1866 in meters is assumed.

Sminor Eccentricity squared of the ellipsoid if less than zero, if zero, a spherical form is
assumed, or if greater than zero, the semi-minor axis of ellipsoid.

Sphere Radius of reference sphere. If zero, 6370997 meters is used.

STDPR1 Latitude of the first standard parallel

STDPR2 Latitude of the second standard parallel

 1-11 170-TP-606-002

CentMer Longitude of the central meridian

OriginLat Latitude of the projection origin

FE False easting in the same units as the semi-major axis

FN False northing in the same units as the semi-major axis

TrueScale Latitude of true scale

LongPol Longitude down below pole of map

Factor Scale factor at central meridian (Transverse Mercator) or center of projection (Hotine
Oblique Mercator)

CentLon Longitude of center of projection

CenterLat Latitude of center of projection

Long1 Longitude of first point on center line (Hotine Oblique Mercator, format A)

Long2 Longitude of second point on center line (Hotine Oblique Mercator, frmt A)

Lat1 Latitude of first point on center line (Hotine Oblique Mercator, format A)

Lat2 Latitude of second point on center line (Hotine Oblique Mercator, format A)

AziAng Azimuth angle east of north of center line (Hotine Oblique Mercator, frmt B)

AzmthPt Longitude of point on central meridian where azimuth occurs (Hotine Oblique
Mercator, format B)

IncAng Inclination of orbit at ascending node, counter-clockwise from equator (SOM, format
A)

AscLong Longitude of ascending orbit at equator (SOM, format A)

PSRev Period of satellite revolution in minutes (SOM, format A)

SRat Satellite ratio to specify the start and end point of x,y values on earth surface (SOM,
 format A -- for Landsat use 0.5201613)

PFlag End of path flag for Landsat: 0 = start of path, 1 = end of path (SOM, frmt A)

Satnum Landsat Satellite Number (SOM, format B)

Path Landsat Path Number (Use WRS-1 for Landsat 1, 2 and 3 and WRS-2 for Landsat 4
and 5.) (SOM, format B)

Nzone Number of equally spaced latitudinal zones (rows); must be two or larger and even

Rflag Right justify columns flag is used to indicate what to do in zones with an odd number
of columns. If it has a value of 0 or 1, it indicates the extra column is on the right
(zero) or left (one) of the projection Y-axis. If the flag is set to 2 (two), the number
of columns are calculated so there are always an even number of columns in each
zone.

 1-12 170-TP-606-002

Notes:

• Array elements 14 and 15 are set to zero.

• All array elements with blank fields are set to zero.

All angles (latitudes, longitudes, azimuths, etc.) are entered in packed degrees/ minutes/ seconds
(DDDMMMSSS.SS) format.

The following notes apply to the Space Oblique Mercator A projection:

• A portion of Landsat rows 1 and 2 may also be seen as parts of rows 246 or 247. To place
these locations at rows 246 or 247, set the end of path flag (parameter 11) to 1--end of path.
This flag defaults to zero.

• When Landsat-1,2,3 orbits are being used, use the following values for the specified
parameters:

− Parameter 4 099005031.2

− Parameter 5 128.87 degrees - (360/251 * path number) in packed DMS format

− Parameter 9 103.2669323

− Parameter 10 0.5201613

• When Landsat-4,5 orbits are being used, use the following values for the specified
parameters:

− Parameter 4 098012000.0

− Parameter 5 129.30 degrees - (360/233 * path number) in packed DMS format

− Parameter 9 98.884119

− Parameter 10 0.5201613

The following notes apply for BCEA projection and EASE grid:

HDFEOS 2.7 and 2.8:

 Behrmann Cylindrical Equal-Area (BCEA) projection was used for 25 km global
EASE grid. For this projection the Earth radius is set to 6371228.0m and latitude of true
scale is 30 degrees. For 25 km global EASE grid the following apply:

Grid Dimensions

Width 1383
Height 586Map

Origin:
Column (r0) 691.0
Row (S0) 292.5
Latitude 0.0
Longitude 0.0

Grid Extent:
 Minimum Latitude 86.72S
 Maximum Latitude 86.72N

 1-13 170-TP-606-002

 Minimum Longitude 180.00W
Maximum Longitude 180.00E
Actual grid cell size 25.067525km

Grid coordinates (r,s) start in the upper left corner at cell (0.0), with r increasing to the
right and s increasing downward.

HDFEOS 2.8.1 and later:

Although the projection code and name kept the same, BCEA projection was
generalized to accept Latitude of True Scales other than 30 degrees, Central Meridian
other than zero, and ellipsoid earth model besides the spherical one with user supplied
radius. This generalization along with the removal of hard coded grid parameters will
allow users not only subsetting, but also creating other grids besides the 25 km global
EASE grid and having freedom to use different appropriate projection parameters. With
the current version one can create the above mentioned 25 km global EASE grid of
previous versions using:
Grid Dimensions:

Width 1383
Height 586

Grid Extent:
 UpLeft Latitude 86.72
 LowRight Latitude -86.72
 UpLeft Longitude -180.00

LowRight Longitude 180.00
Projection Parameters:

1) 6371.2280/25.067525 = 254.16263
2) 6371.2280/25.067525 = 254.16263
5) 0.0
6) 30000000.0
7) 691.0
8) –292.5

Also one may create 12.5 km global EASE grid using:

Grid Dimensions:

Width 2766
Height 1171

Grid Extent:
 UpLeft Latitude 85.95
 LowRight Latitude –85.95
 UpLeft Longitude –179.93

LowRight Longitude 180.07
Projection Parameters:

1) 6371.2280/(25.067525/2) = 508.325253
2) 6371.2280/(25.067525/2) = 508.325253
5) 0.0
6) 30000000.0
7) 1382.0
8) –585.0

Any other grids (normalized pixels or not) with generalized BCEA projection can be
created using appropriate grid corners, dimension sizes, and projection parameters.
Please note that like other projections Semi-major and Semi-minor axes will default to
Clarke 1866 values (in meters) if they are set to zero.

 1-14 170-TP-606-002

This page intentionally left blank.

 2-1 170-TP-606-002

2. Function Reference

2.1 Format
This section contains a function-by-function reference for each interface in the HDF-EOS
library. Each function has a separate page describing it (in some cases there are multiple pages).
Each page contains the following information (in order):

• Function name as used in C

• Function declaration in ANSI C format

• Description of each argument

• Purpose of routine

• Description of returned value

• Description of the operation of the routine

• A short example of how to use the routine in C

• The FORTRAN declaration of the function and arguments

• An equivalent FORTRAN example

2.1.1 Point Interface Functions

This section contains an alphabetical listing of all the functions in the Point interface. The
functions are alphabetized based on their C-language names.

 2-2 170-TP-606-002

Attach to an Existing Point Structure

PTattach
int PTattach(int fid, char *pointname)

fid IN: Point file id returned by PTopen

pointname IN: Name of point to be attached

Purpose Attaches to an existing point within the file.

Return value Returns the point handle (pointID) if successful or FAIL (-1) otherwise.
Typical reasons for failure are an improper point file id or point name.

Description This routine attaches to the point using the pointname parameter as the
identifier.

Example In this example, we attach to the previously created point,
"ExamplePoint", within the HDF file, PointFile.hdf, referred to by the
handle, fid:

pointID = PTattach(fid, "ExamplePoint");

 The point can then be referenced by subsequent routines using the handle,
pointID.

FORTRAN integer function ptattach(fid,pointname)

 integer fid

 character*(*) pointname

 The equivalent FORTRAN code for the example above is:

status = ptattach(fid, "ExamplePoint")

 2-3 170-TP-606-002

Return Information About a Point Attribute

PTattrinfo
int PTattrinfo(int pointID, char *attrname, int * numbertype, hsize_t *count)

pointID IN: Point id returned by PTcreate or PTattach

attrname IN: Attribute name

numbertype OUT: Number type of attribute

count OUT: Number of total bytes in attribute

Purpose Returns information about a point attribute

Return value Returns SUCCEED (0) if successful or FAIL (-1) otherwise.

Description This routine returns number type and number of elements (count) of a
point attribute.

Example In this example, we return information about the ScalarFloat attribute.

status = PTattrinfo(pointID, "ScalarFloat",&nt,&count);

 The nt variable will have the value 5 and count will have the value 4.

FORTRAN integer function ptattrinfo(pointid, attrname, ntype, count,)

 Integer pointid

 character*(*) attrname

 integer ntype

 integer count

 The equivalent FORTRAN code for the first example above is:

status = ptattrinfo(pointid, "ScalarFloat",nt,count)

 2-4 170-TP-606-002

Return Linkage Field to Previous Level

PTbcklinkinfo
int PTbcklinkinfo(int pointID, int level, char *linkfield)

pointID IN: Point id returned by PTcreate or PTattach

level IN: Point level (0-based)

linkfield OUT: Link field

Purpose Returns the linkfield to the previous level.

Return value Returns SUCCEED (0) if successful or FAIL (-1) otherwise.

Description This routine returns the linkfield to the previous level.

Example In this example, we return the linkfield connecting the Observations level
to the previous Desc-Loc level. (This levels are defined in the PTdeflevel
routine.)

status = PTbcklinkinfo(pointID2, 1, linkfield);

 The linkfield will contain the string: ID.

FORTRAN integer ptblinkinfo(pointid, level, linkfield)

 integer pointid

integer level

 character*(*) linkfield

 The equivalent FORTRAN code for the example above is:

 status = ptblinkinfo(pointid2, 0, linkfield)

 2-5 170-TP-606-002

Close an HDF-EOS File

PTclose
intn PTclose(int32 fid)

fid IN: Point file id returned by PTopen

Purpose Closes file.

Return value Returns SUCCEED (0) if successful or FAIL (-1) otherwise.

Description This routine closes the HDF point file.

Example

status = PTclose(fid);

FORTRAN integer ptclose(fid)

 integer*4 fid

 The equivalent FORTRAN code for the example above is:

status = ptclose(fid)

 2-6 170-TP-606-002

Create a New Point Structure

PTcreate
int32 PTcreate(int32 fid, char *pointname)

fid IN: Point file id returned by PTopen

pointname IN: Name of point to be created

Purpose Creates a point within the file.

Return value Returns the point handle (pointID) if successful or FAIL (-1) otherwise.

Description The point is created as a Vgroup within the HDF file with the name
pointname and class POINT.

Example In this example, we create a new point structure, ExamplePoint, in the
previously created file, PointFile.hdf.

pointID = PTcreate(fid, "ExamplePoint");

 The point structure is then referenced by subsequent routines using the
handle, pointID.

FORTRAN integer*4 function ptcreate(fid,pointname)

 integer*4 fid

 character*(*) pointname

 The equivalent FORTRAN code for the example above is:

pointid = ptcreate(fid, "ExamplePoint");

 2-7 170-TP-606-002

Define Region of Interest by Latitude/Longitude

PTdefboxregion
int32 PTdefboxregion(int32pointID, float64 cornerlon[], float64 cornerlat[])

pointID IN: Point id returned by PTcreate or PTattach

cornerlon IN: Longitude in decimal degrees of box corners

cornerlat IN: Latitude in decimal degrees of box corners

Purpose Defines a longitude-latitude box region for a point.

Return value Returns the point regionID if successful or FAIL (-1) otherwise.

Description This routine defines an area of interest for a point. It returns a point
region ID which is used by the PTextractregion routine to read the fields
from a level for those records within the area of interest.The point
structure must have a level with both a Longitude and Latitude (or
Colatitude) field defined

Example In this example, we define an area of interest with (opposite) corners at -
145 degrees longitude, -15 degrees latitude and -135 degrees longitude, -8
degrees latitude.
cornerlon[0] = -145.;

cornerlat[0] = -15.;

cornerlon[1] = -135.;

cornerlat[1] = -8.;

regionID = PTdefboxregion(pointID, cornerlon, cornerlat);

FORTRAN integer*4 function ptdefboxreg(pointid, cornerlon, cornerlat)

 integer*4 pointid

 real*8 cornerlon

 real*8 cornerlat

 The equivalent FORTRAN code for the example above is:
cornerlon(1) = -145.

cornerlat(1) = -15.

cornerlon(2) = -135.

cornerlat(2) = -8.

regionid = ptdefboxreg(pointid, cornerlon, cornerlat)

 2-8 170-TP-606-002

Define a New Level Within a Point

PTdeflevel
intn PTdeflevel(int32 pointID, char *levelname, char *fieldlist, int32 fieldtype[], int32

fieldorder[])

pointID IN: Point id returned by PTcreate or PTattach

levelname IN: Name of level to be defined

fieldlist IN: List of fields in level

fieldtype IN: Array containing field type of each field within level

fieldorder IN: Array containing order of each field within level

Purpose Defines a new level within the point.

Return value Returns SUCCEED (0) if successful or FAIL (-1) otherwise.

Description This routine defines a level within the point. A simple point consists of a
single level. A point where there is common data for a number of records
can be more efficiently stored with multiple levels. The order in which the
levels are defined determines the (0-based) level index.

Example Simple Point

 In this example, we define a simple single level point, with levelname,
Sensor. The levelname should not contain any slashes (“/”). It consists of
six fields, ID, Time, Longitude, Latitude, Temperature, and Mode defined
in the field list. The fieldtype and fieldorder parameters are arrays
consisting of the HDF number type codes and field orders, respectively.
The Temperature is an array field of dimension 4 and the Mode field a
character string of size 4. All other fields are scalars. Note that the order
for numerical scalar variables can be either 0 or 1.

int32 fieldtype[6] = {DFNT_INT16, DFNT_INT16,

 DFNT_FLOAT32,DFNT_FLOAT32, DFNT_FLOAT32,DFNT_CHAR8};

int32 fieldorder[6] = {0,0,0,0,4,4};

char8 *fldlist =

 "ID,Time,Longitude,Latitude,Temperature,Mode";

status = PTdeflevel(pointID1, "Sensor", fldlist, fieldtype,

 fieldorder);

 2-9 170-TP-606-002

 Multi-Level Point

 In this example, we define a two-level point that describes data from a
network of fixed buoys. The first level contains information about each
buoy and includes the name (label) of the buoy, its (fixed) longitude and
latitude, its deployment date, and an ID that is used to link it to the
following level. (The link field is defined in the PTdeflinkage routine
described later.) The entries within this ID field must be unique. The
second level contains the actual measurements from the buoys (rainfall
and temperature values) plus the observation time and the ID which
relates a given measurement to a particular buoy entry in the previous
level. There can be many records in this level with the same ID since there
can be multiple measurements from a single buoy. It is advantageous,
although not mandatory, to store all records for a particular buoy (ID)
contiguously.

Level 0
int32 fieldtype0[5] = {DFNT_CHAR8, DFNT_FLOAT64,
 DFNT_FLOAT64,DFNT_INT32,DFNT_CHAR8};

int32 fieldorder0[5] = {8,0,0,0,1};

char8 *fldlist0 = "Label,Longitude,Latitude,DeployDate,ID";

status = PTdeflevel(pointID2, "Desc-Loc", fldlist0, fieldtype0,
fieldorder0);

Level 1
int32 fieldtype1[4] = {DFNT_FLOAT64, DFNT_FLOAT32,
DFNT_FLOAT32, DFNT_CHAR8};

int32 fieldorder1[4] = {0,0,0,1};

char8 *fldlist1 = "Time,Rainfall,Temperature,ID";

status = PTdeflevel(pointID2, "Observations", fldlist1,
fieldtype1, fieldorder1);

FORTRAN integer function ptdeflev(pointid, levelname, fieldlist, fieldtype, fieldorder)

 integer*4 pointid

 character*(*) levelname

 character*(*) fieldlist

 integer*4 fieldtype (*)

 integer*4 fieldorder (*)

 The equivalent FORTRAN code for the first example above is:

status = PTdeflevel(pointID1, "Sensor", fldlist, fieldtype,

fieldorder)

 2-10 170-TP-606-002

Define Linkage Field Between Two Levels

PTdeflinkage
intn PTdeflinkage(int32 pointID, char *parent, char *child, char *linkfield)

pointID IN: Point id returned by PTcreate or PTattach

parent IN: Name of parent level

child IN: Name of child level

linkfield IN: Name of (common) linkfield

Purpose Defines a linkfield between two (adjacent) levels.

Return value Returns SUCCEED (0) if successful or FAIL (-1) otherwise.

Description This routine defines the linkfield between two levels. This field must be
defined in both levels.

Example In this example we define the ID field as the link between the two levels
defined previously in the PTdeflevel routine.

status = PTdeflinkage(pointID2, “Desc-Loc”, “Observations”,

“ID”);

FORTRAN integer function ptdeflink(pointid, parent, child ,linkfield)

 integer*4 pointid

 character*(*) parent

 character*(*) child

 character*(*) linkfield

 The equivalent FORTRAN code for the example above is:

status = ptdeflink(pointid2, "Desc-Loc", “Observations”,

 “ID”)

 2-11 170-TP-606-002

Define Time Period of Interest

PTdeftimeperiod

int32 PTdeftimeperiod(int32pointID, float64 starttime, float64 stoptime)

pointID IN: Point id returned by PTcreate or PTattach

starttime IN: Start time of period

stoptime IN: Stop time of period

Purpose Defines a time period for a point.

Return value Returns the point periodID if successful or FAIL (-1) otherwise.

Description This routine defines time period for a point. It returns a point period ID
which is used by the PTextractperiod routine to read the fields from a level
for those records within the time period. The point structure must have a
level with theTime field defined

Example In this example, we define a time period with a start time of 35208757.6
and a stop time of 35984639.2

starttime = 35208757.6;

stoptime = 35984639.2;

periodID = PTdeftimeperiod(pointID, starttime, stoptime);

FORTRAN integer*4 function ptdeftmeper(pointid, starttime,stoptime)

 integer*4 pointid

 real*8 starttime

 real*8 stoptime

 The equivalent FORTRAN code for the example above is:

starttime = 35208757.6

stoptime = 35984639.2

periodid = ptdeftmeper(pointid, starttime, stoptime)

 2-12 170-TP-606-002

Note: This function determines whether a record in the point data is within the
specified time interval by doing a simple boolean comparison of the
“Time” value and the “starttime” and “stoptime”. This simple boolean
comparison does not take into account the precisions of the values being
compared. As a result, the first and last records in the subset can be
erroneously determined to be outside the interval simply because they are
not defined to the maximum precision of a float 64 value. It is the
responsibility of the user to subtract a tolerance from the starttime and
add it to the stoptime before calling the function.

 2-13 170-TP-606-002

Define a Vertical Subset Region

PTdefvrtregion
int32 PTdefvrtregion(int32 pointID, int32 regionID, char *fieldname, float64 range[])

pointID IN: Point id returned by PTcreate or PTattach

regionID IN: Region (or period) id from previous subset call

fieldname IN: Dimension or field to subset by

range IN: Minimum and maximum range for subset

Purpose Selects records within a given range for the given field.

Return value Returns the point region ID if successful or FAIL (-1) otherwise.

Description This routine allows the user to select those records within a point whose
field values are within a given range. (For the current version of this
routine, the field must have one of the following number types: INT16,
INT32, FLOAT32, FLOAT64.) This routine may be called after
PTdefboxregion or PTdeftimeperiod to provide both geographic or time
and “vertical” subsetting . In this case the user provides the id from the
previous subset call. (This same id is then returned by the function.) This
routine may also be called “stand-alone” by setting the input id to
HDFE_NOPREVSUB (-1).

 This routine may be called as many times as desired for a single region.
In this way a region can be subsetted using a number of field ranges. The
PTregioninfo and PTextractregion routines work in the usual manner.

Example Suppose we wish to find those records within a point whose Rainfall
values fall between 1 and 2. We wish to search all the records within the
point so we set the input region ID to HDFE_NOPREVSUB (-1).
range[0] = 1.;

range[1] = 2.;

regionID = PTdefvrtregion(pointID, HDFE_NOPREVSUB, “Rainfall”,
range);

We now wish to subset further using the Temperature field.
range[0] = 22.;

range[1] = 24.;

regionID = PTdefvrtregion(pointID, regionID, “Temperature”,
range);

The subsetted region referred to by regionID will now contain those records whose
Rainfall field are between 1 and 2 and whose Temperature field are
between 22 and 24.:

 2-14 170-TP-606-002

FORTRAN integer*4 function ptdefvrtreg(pointid, regionid, fieldname, range)

 integer*4 pointid

 integer*4 regionid

character*(*) fieldname

 real*8 range

 The equivalent FORTRAN code for the examples above is:
parameter (HDFE_NOPREVSUB=-1)

range(1) = 1.

range(2) = 2.

regionid = ptdefvrtreg(pointid, HDFE_NOPREVSUB, ‘Rainfall’,
range)

range(1) = 22. ! Note 1-based element numbers

range(2) = 24.

regionid = ptdefvrtreg(pointid, regionid, ‘Temperature’, range)

 2-15 170-TP-606-002

Detach from Point Structure

PTdetach
intn PTdetach(int32 pointID)

pointID IN: Point id returned by PTcreate or PTattach

Purpose Detaches from point data set.

Return value Returns SUCCEED (0) if successful or FAIL (-1) otherwise.

Description This routine should be run before exiting from the point file for every
point opened by PTcreate or PTattach.

Example In this example, we detach the point structure, ExamplePoint:

status = PTdetach(pointID);

FORTRAN integer ptdetach(pointid)

 integer*4 pointid

 The equivalent FORTRAN code for the example above is:

status = ptdetach(pointid)

 2-16 170-TP-606-002

Reads Point Records for a Specified Time Period

PTextractperiod

intn PTextractperiod(int32 pointID, int32 periodID, int32 level, char *fieldlist,
 VOIDP buffer)

pointID IN: Point id

periodID IN: Period id returned by PTdeftimeperiod

level IN: Point level (0-based)

fieldlist IN: List of fields to extract

buffer OUT: Data buffer

Purpose Extracts (reads) from subsetted time period.

Return value Returns SUCCEED (0) if successful or FAIL (-1) otherwise.

Description This routine reads data from the designated level fields into the data
buffer from the subsetted time period.

Example In this example, we read data within the subsetted time period defined in
Ptdeftimeperiod from theTime field.

/* Read subsetted data into buffer */

status = PTextractperiod(pointID, periodID, 0, "Time",

datbuf);

FORTRAN integer function ptextper(pointid,periodid,level,fieldlist,buffer)

 integer*4 pointid

 integer*4 periodid

 integer*4 level

 character*(*) fieldlist

 <valid type> buffer(*)

 The equivalent FORTRAN code for the example above is:

status = ptextper(pointid,periodid,0,”Time”,datbuf)

 2-17 170-TP-606-002

Reads Point Records for a Specified
Geographic Region

PTextractregion
intn PTextractregion(int32 pointID, int32 regionID, int32 level, char *fieldlist,
 VOIDP buffer)

pointID IN: Point id

regionID IN: Region id returned by PTdefboxregion

level IN: Point level (0-based)

fieldlist IN: List of fields to extract

buffer OUT: Data buffer

Purpose Extracts (reads) from subsetted area of interest.

Return value Returns SUCCEED (0) if successful or FAIL (-1) otherwise.

Description This routine reads data from the designated level fields into the data
buffer from the subsetted area of interest.

Example In this example, we read data within the subsetted area of interest defined
in PTdefboxregion from the Longitude and Latitude fields.

/* Read subsetted data into buffer */

status = PTextractregion(pointID, regionID, 0,

"Longitude,Latitude",datbuf);

FORTRAN integer function ptextreg(pointid,regionid,level,fieldlist,buffer)

 integer*4 pointid

 integer*4 regionid

 integer*4 level

 character*(*) fieldlist

 <valid type> buffer(*)

 The equivalent FORTRAN code for the example above is:

status =

ptextreg(pointid,regionid,0,”Longitude,Latitude”,datbuf)

 2-18 170-TP-606-002

Return Linkage Field to Following Level

PTfwdlinkinfo
intn PTfwdlinkinfo(int32 pointID, int32 level, char *linkfield)

pointID IN: Point id returned by PTcreate or PTattach

level IN: Point level (0-based)

linkfield OUT: Link field

Purpose Returns the linkfield to the following level.

Return value Returns SUCCEED (0) if successful or FAIL (-1) otherwise.

Description This routine returns the linkfield to the following level.

Example In this example, we return the linkfield connecting the Desc-Loc level to
the following Observations level. (These levels are defined in the
PTdeflevel routine.)

status = PTfwdlinkinfo(pointID2, 1, linkfield);

 The linkfield will contain the string: ID.

FORTRAN integer ptflinkinfo(pointid, level, linkfield)

 integer*4 pointid

 integer*4 level

 character*(*) linkfield

 The equivalent FORTRAN code for the example above is:

status = ptflinkinfo(pointid2, 1, linkfield)

 2-19 170-TP-606-002

Return Level Name

PTgetlevelname
intn PTgetlevelname(int32 pointID,int32 level, char *levelname, int32 *strbufsize)

pointID IN: Point id returned by PTcreate or PTattach

level IN: Point level (0-based)

levelname OUT: Level name

strbufsize OUT: String length of level name

Purpose Returns the name of a level given the level number.

Return value Returns SUCCEED (0) if successful or FAIL (-1) otherwise.

Description This routine returns the name of a level given the level number (0-based).
If the user passes NULL for the levelname, the routine will return just the
string length of the level name (not counting the null terminator).

Example In this example, we return the level name of the 0th level of the second
point defined in the PTdeflevel section:

status = PTgetlevelname(pointID2, 0, levelname, &strbufsize);

 The levelname will contain the string: Desc-Loc and the strbufsize
variable will be set to 8.

FORTRAN integer ptgetlevname(pointid, level, levelname,strbufsize)

 integer*4 pointid

 integer*4 level

 character*(*) levelname

 integer*4 strbufsize

 The equivalent FORTRAN code for the example above is:

status = ptgetlevname(pointid2, 0, levelname, strbufsize)

 2-20 170-TP-606-002

Return Record Numbers Related to Level

PTgetrecnums
intn PTgetrecnums(int32 pointID, int32 inlevel, int32 outlevel, int32 inNrec, int32 inRecs[],

int32 *outNrec, int32 outRecs[])

pointID IN: Point id returned by PTcreate or PTattach

inlevel IN: Level number of input records(0-based)

outlevel IN: Level number of output records(0-based)

inNrec IN: Number of records in the inRecs array

inRecs IN: Array containing the input record numbers.

outNrec OUT: Number of records in the outRecs array

outRecs OUT Array containing the output record numbers.

Purpose Returns the record numbers in one level corresponding to a group of
records in a different level.

Return value Returns SUCCEED (0) if successful or FAIL (-1) otherwise.

Description The records in one level are related to those in another through the link
field. These in turn are related to the next. In this way each record in any
level is related to others in all the levels of the point structure. The
purpose of PTgetrecnums is to return the record numbers in one level that
are connected to a given set of records in a different level. Note that the
two levels need not be adjacent.

Example In this example, we get the record number in the second level that are
related to the first record in the first level.

nrec = 1;

recs[0] = 0;

inLevel = 0;

outLevel = 1;

status = PTgetrecnums(pointID2, inLevel, outLevel, nrec, recs,

&outNrec, outRecs);

 2-21 170-TP-606-002

FORTRAN integer
ptgetrecnum(pointID,inlevel,outlevel,innrec,inrecs,outnrec,outrecs)

 integer*4 pointid

 integer*4 inlevel

 integer*4 outlevel

 integer*4 innrec

 integer*4 inrecs

 integer*4 outnrec

 integer*4 outnrecs

 The equivalent FORTRAN code for the example above is:

status=ptgetrecnums(pointid2,inlevel,outlevel,nrec,recs,outn

rec,outrecs)

 2-22 170-TP-606-002

Retrieve Information About Point Attributes

PTinqattrs
int32 PTinqattrs(int32 pointID, char *attrlist, int32 *strbufsize)

pointID IN: Point id returned by PTcreate or PTattach

attrlist OUT: Attribute list (entries separated by commas)

strbufsize OUT: String length of attribute list

Purpose Retrieve information about attributes defined in point.

Return value Number of attributes found if successful or FAIL (-1) otherwise.

Description The attribute list is returned as a string with each attribute name
separated by commas. If attrlist is set to NULL, then the routine will
return just the string buffer size, strbufsize. This variable does not count
the null string terminator.

Example In this example, we retrieve information about the attributes defined in a
point structure. We assume that there are two attributes stored, attrOne
and attr_2:

nattr = PTinqattrs(pointID, NULL, strbufsize);

 The parameter, nattr, will have the value 2 and strbufsize will have value
14.

nattr = PTinqattrs(pointID, attrlist, strbufsize);

 The variable, attrlist, will be set to:

 "attrOne,attr_2".

FORTRAN integer*4 function ptinqattrs(pointid,attrlist,strbufsize)

 integer*4 pointid

 character*(*) attrlist

 integer*4 strbufsize

 The equivalent FORTRAN code for the example above is:

nattr = ptinqattrs(pointid, attrlist, strbufsize)

 2-23 170-TP-606-002

Retrieve Point Structures Defined in HDF-EOS File

PTinqpoint
int32 PTinqpoint(char * filename, char *pointlist, int32 *strbufsize)

filename IN: HDF-EOS filename

pointlist OUT: Point list (entries separated by commas)

strbufsize OUT: String length of point list

Purpose Retrieves number and names of points defined in HDF-EOS file.

Return value Number of points found if successful or FAIL (-1) otherwise.

Description The point list is returned as a string with each point name separated by
commas. If pointlist is set to NULL, then the routine will return just the
string buffer size, strbufsize. If strbufsize is also set to NULL, the routine
returns just the number of points. Note that strbufsize does not count the
null string terminator.

Example In this example, we retrieve information about the points defined in an
HDF-EOS file, HDFEOS.hdf. We assume that there are two points
stored, PointOne and Point_2:

npoint = PTinqpoint(“HDFEOS.hdf”, NULL, strbufsize);

 The parameter, npoint, will have the value 2 and strbufsize will have value
16.

npoint = PTinqpoint(“HDFEOS.hdf”, pointlist, strbufsize);

 The variable, pointlist, will be set to:

 “PointOne,Point_2”.

FORTRAN integer*4 function ptinqpoint(filename,pointlist,strbufsize)

 character*(*) filename

 character*(*) pointlist

integer*4 strbufsize

 The equivalent FORTRAN code for the example above is:

npoint = ptinqpoint(“HDFEOS.hdf”, pointlist, strbufsize)

 2-24 170-TP-606-002

Return Index Number of a Named Level

PTlevelindx
int32 PTlevelindx(int32 pointID, char *levelname)

pointID IN: Point id returned by PTcreate or PTattach

levelname IN: Level Name

Purpose Returns the level index (0-based) for a given (named) level.

Return value Returns the level index if successful or FAIL (-1) otherwise.

Description This routine returns the level index for a give level specified by name.

Example In this example, we return the level index of the Observations level in the
multilevel point structure defined in PTdeflevel.

levindx = PTlevelindex(pointID2, “Observations”);

 The levindx variable will have the value 1.

FORTRAN integer*4 ptlevidx (pointid) levelname)

 integer*4 pointid

 character*(*) levelname

 The equivalent FORTRAN code for the example above is:

levindx = ptlevidx(pointid2, “Observations”)

 2-25 170-TP-606-002

Return Information on Fields in a Given Level

PTlevelinfo
int32 PTlevelinfo(int32 pointID, int32 level, char *fieldlist, int32 fldtype[], int32 fldorder[])

pointID IN: Point id returned by PTcreate or PTattach

level IN: Point level (0-based)

fieldlist OUT: Field names in level

fldtype OUT: Number type of each field

fldorder OUT: Order of each field

Purpose Returns information on fields in a given level.

Return value Returns number of fields if successful or FAIL (-1) otherwise. Typical
reasons for failure are an improper point id or level number.

Description This routine returns information about the fields in a given level.

Example In this example we return information about the Desc-Loc (1st) level
defined previously.

nflds = PTlevelinfo(pointID2, 0, fldlist, fldtype, fldorder);

 The fldlist variable will be set to:
 "Time,Longitude,Latitude,Channel,Value".

 The nflds= 5, the fldtype array = {22,5,5,22,5}, the fldorder array =
{0,0,0,0,0}.

FORTRAN integer*4 function ptlevinfo(pointID, level, fieldlist, fldtype, fldorder)

 integer*4 pointid

 integer*4 level

 character*(*) fieldlist

 integer*4 fldtype (*)

 integer*4 fldorder (*)

The equivalent FORTRAN code for the example above is:
nflds = ptlevinfo(pointid2, 0, fldlist, fldtype, fldorder)

 Unlike the C language example, all output parameters must be supplied in
 the call.

 2-26 170-TP-606-002

Return Number of Fields Defined in a Level

PTnfields
int32 PTnfields(int32 pointID, int32 level, int32 *strbufsize)

pointID IN: Point id returned by PTcreate or PTattach

level IN: Level number (0-based)

strbufsize OUT: Size in bytes of fieldlist for level

Purpose Returns number of fields in a level and the size of the fieldlist.

Return value Returns number of fields if successful or FAIL (-1) otherwise.

Description This routine returns the number of fields in a level and the size of the
comma-separated fieldlist. This value does NOT count the null character
at the end of the string.

Example In this example we retrieve the number of levels in the 2nd point defined
previously:

nflds = PTnfields(pointID2, 0, strbufsize);

 The nfldsvariable will be 5 and the strbufsize variable equal to 38.

FORTRAN integer*4 function ptnflds(pointid), level, strbufsize

 integer*4 pointid

 integer*4 level

 integer*4 strbufsize

 The equivalent FORTRAN code for the example above is:

nflds = ptnflds(pointid2, 0, strbufsize)

 2-27 170-TP-606-002

Return Number of Levels in a Point Structure

PTnlevels
int32 PTnlevels(int32 pointID)

pointID IN: Point id returned by PTcreate or PTattach

Purpose Returns number of levels in a point.

Return value Returns number of levels if successful or FAIL (-1) otherwise. Typical
reasons for failure are an improper point id.

Description This routine returns the number of levels in a point.

Example In this example we retrieve the number of levels in the 2nd point defined
previously:

nlevels = PTnlevels(pointID2);

 The nlevels variable will be 2.

FORTRAN integer*4 function ptnlevs(pointid)

 integer*4 pointid

 The equivalent FORTRAN code for the example above is:

nlevels = ptnlevs(pointid2)

 2-28 170-TP-606-002

Return Number of Records in a Given Level

PTnrecs
int32 PTnrecs(int32 pointID, int32 level)

pointID IN: Point id returned by PTcreate or PTattach

level IN: Level number (0-based)

Purpose Returns number of records in a given level.

Return value Returns number of records in a given level if successful or FAIL (-1)
otherwise. Typical reasons for failure are an improper point id or level
number.

Description This routine returns the number of records in a given level.

Example In this example we retrieve the number of records in the first level of the
2nd point defined previously:

nrecs = PTnrecs(pointID2, 0);

FORTRAN integer*4 function ptnrecs(pointid,level)

 integer*4 pointid

 integer*4 level

 The equivalent FORTRAN code for the example above is:

nrecs = ptnrecs(pointid2, 0)

 2-29 170-TP-606-002

Open HDF-EOS File

PTopen
int32 PTopen(char *filename, intn access)

filename IN: Complete path and filename for the file to be opened

access IN: DFACC_READ, DFACC_RDWR or DFACC_CREATE

Purpose Opens or creates HDF file in order to create, read, or write a point.

Return value Returns the point file id handle (fid) if successful or FAIL (-1) otherwise.

Description This routine creates a new file or opens an existing one, depending on the
access parameter.

 Access codes:

 DFACC_READ Open for read only. If file does not exist, error

 DFACC_RDWR Open for read/write. If file does not exist, create it

 DFACC_CREATE If file exist, delete it, then open a new file for
 read/write

Example In this example, we create a new point file named, PointFile.hdf. It returns
the file handle, fid.

fid = PTopen("PointFile.hdf", DFACC_CREATE);

FORTRAN integer*4 function ptopen(filename, access)

 character*(*) filename

 integer access

 The access codes should be defined as parameters:

 parameter (DFACC_READ=1)

 parameter (DFACC_RDWR=3)

 parameter (DFACC_CREATE=4)

 The equivalent FORTRAN code for the example above is:

fid = ptopen("PointFile.hdf", DFACC_CREATE)

Note to users of the SDP Toolkit: Please refer to the Release 6A.07 SDP Toolkit User Guide for
the ECS Project (333-CD-605-003), Section 6.2.1.2, for information on how to obtain a file
name (referred to as a “physical file handle”) from within a PGE. See also Section 9 of this
document for code examples.

 2-30 170-TP-606-002

Returns Information About a Time Period

PTperiodinfo

intn PTperiodinfo(int32 pointID, int32 periodID, int32 level, char *fieldlist,
 int32 *size)

pointID IN: Point id

periodID IN: Period id returned by PTdeftimeperiod

level IN: Point level (0-based)

fieldlist IN: List of fields to extract

size OUT: Size in bytes of subset period

Purpose Retrieves information about the subsetted period.

Return value Returns SUCCEED (0) if successful or FAIL (-1) otherwise.

Description This routine returns information about a subsetted time period for a
particular fieldlist. It is useful when allocating space for a data buffer for
the subset.

Example In this example, we get the size of the subsetted time period defined in
PTdeftimeperiod for the Time field.

status = PTperiodinto(pointID, periodID, 0, "Time", &size);

FORTRAN integer function ptperinfo(pointid,periodid,level,fieldlist,size)

 integer*4 pointid

 integer*4 periodid

 integer*4 level

 character*(*) fieldlist

 integer*4 size

 The equivalent FORTRAN code for the example above is:

status = ptperinfo(pointid,periodid,0,”Time”,size)

 2-31 170-TP-606-002

Returns Record Numbers within a Time Period

PTperiodrecs

intn PTperiodrecs(int32 pointID, int32 periodID, int32 level, int32 *nrec, int32 recs[])
pointID IN: Point id

periodID IN: Period id returned by PTdeftimeperiod

level IN: Point level (0-based)

nrec OUT: Number of records within time period in level

recs OUT: Record numbers of subsetted records in level

Purpose Retrieves record numbers within time period.

Return value Returns SUCCEED (0) if successful or FAIL (-1) otherwise.

Description This routine returns the record numbers within a subsetted time period for
a particular level. If the recs array is set to NULL, then the routine simply
returns the number of records.

Example In this example, we get the number of records and record numbers within
the subsetted area of interest defined in PTdeftimeperiod for the 0th level.

status = PTperiodrecs(pointID, periodID, 0, &nrec, recs);

FORTRAN integer function ptperrecs(pointid,periodid,level,nrec,recs)

 integer*4 pointid

 integer*4 periodid

 integer*4 level

 integer*4 nrec

 integer*4 recs(*)

 The equivalent FORTRAN code for the example above is:

status = ptperrecs(pointid,periodid,0,nrec,recs)

 2-32 170-TP-606-002

Read Point Attribute

PTreadattr
intn PTreadattr(int32 pointID, char *attrname, VOIDP datbuf)

pointID IN: Point id returned by PTcreate or PTattach

attrname IN: Attribute name

datbuf IN: Buffer allocated to hold attribute values

Purpose Reads attribute from a point.

Return value Returns SUCCEED (0) if successful or FAIL (-1) otherwise. Typical
reasons for failure are an improper point id or number type or incorrect
attribute name.

Description The attribute is passed by reference rather than value in order that a
single routine suffice for all numerical types.

Example In this example, we read a single precision (32 bit) floating point attribute
with the name "ScalarFloat":

status = PTreadattr(pointID, "ScalarFloat", &f32);

FORTRAN integer function ptrdattr(pointid, attrname, datbuf)

 integer*4 pointid

 character*(*) attrname

 <valid type> datbuf(*)

 The equivalent FORTRAN code for the example above is:

status = ptrdattr(pointid, "ScalarFloat", f32)

 2-33 170-TP-606-002

Read Records From a Point Level

PTreadlevel
intn PTreadlevel(int32 pointID, int32 level, char fieldlist, int32 nrec, int32 recs[], VOIDP buffer)

pointID IN: Point id returned by PTcreate or PTattach

level IN: Level to read (0-based)

fieldlist IN: List of fields to read

nrec IN: Number of records to read

recs IN: Record number of records to read (0 - based)

buffer OUT: Buffer to store data

Purpose Reads data from a point level.

Return value Returns SUCCEED (0) if successful or FAIL (-1) otherwise. Typical
reasons for failure are an improper point id or unknown fieldname.

Description This routine reads data from the specified fields and records of a single
level in a point. Sufficient space in the read buffer must be allocated by
the user.

Example In this example we read records 0, 2, and 3 from the Temperature and
Mode fields in the first level in the point referred to by the point id,
pointID1.
int32 recs[3] = {0,2,3};

status = PTreadlevel(pointID1, 0, "Temperature,Mode", 3,
 recs, buffer);

FORTRAN integer function

 ptrdlev(pointid,level,fieldlist,nrec,recs,buffer)

 integer*4 pointid

 integer*4 level

 character*(*) fieldlist

 integer*4 nrec

 integer*4 recs(*)

 <valid type> buffer(*)

 2-34 170-TP-606-002

 The equivalent FORTRAN code for the example above is:
integer*4 recs(10)

recs(1) = 0

recs(2) = 2

recs(3) = 3

status = ptrdlev(pointid1, 1, "Temperature,Mode", 3, recs,
 buffer)

 2-35 170-TP-606-002

Returns Information About a Geographic Region

PTregioninfo

intn PTregioninfo(int32 pointID, int32 regionID, int32 level, char *fieldlist,
 int32 *size)

pointID IN: Point id returned by Ptcreate or PTattach

regionID IN: Region id returned by PTdefboxregion

level IN: Point level (0-based)

fieldlist IN: List of fields to extract

size OUT: Size in bytes of subset region

Purpose Retrieves information about the subsetted region.

Return value Returns SUCCEED (0) if successful or FAIL (-1) otherwise.

Description This routine returns information about a subsetted area of interest for a
particular fieldlist. It is useful when allocating space for a data buffer for
the subset.

Example In this example, we get the size of the subsetted area of interest defined in
PTdefboxregion from the Longitude and Latitude fields.

status = PTregioninfo(pointID, regionID, 0,

"Longitude,Latitude",&size);

FORTRAN integer function ptreginfo(pointid,regionid,level,fieldlist,size)

 integer*4 pointid

 integer*4 regionid

 integer*4 level

 character*(*) fieldlist

 integer*4 size

 The equivalent FORTRAN code for the example above is:

status =

ptreginfo(pointid,regionid,0,”Longitude,Latitude”,size)

 2-36 170-TP-606-002

Returns Record Numbers within a Geographic Region

PTregionrecs

intn PTregionrecs(int32 pointID, int32 regionID, int32 level, int32 *nrec, int32 recs[])
pointID IN: Point id returned by PTcreate or PTattach

regionID IN: Region id returned by PTdefboxregion

level IN: Point level (0-based)

nrec OUT: Number of records within geographic region in level

recs OUT: Record numbers of subsetted records in level

Purpose Retrieves record numbers within geographic region.

Return value Returns SUCCEED (0) if successful or FAIL (-1) otherwise.

Description This routine returns the record numbers within a subsetted geographic
region for a particular level. If the recs array is set to NULL, then the
routine simply returns the number of records.

Example In this example, we get the number of records and record numbers within
the subsetted area of interest defined in PTdefboxregion for the 0th level.

status = PTregionrecs(pointID, regionID, 0, &nrec, recs);

FORTRAN integer function ptregrecs(pointid,regionid,level,nrec,recs)

 integer*4 pointid

 integer*4 regionid

 integer*4 level

 integer*4 nrec

 integer*4 recs(*)

 The equivalent FORTRAN code for the example above is:

status = ptregrecs(pointid,regionid,0,nrec,recs)

 2-37 170-TP-606-002

Return Information About Fields in a Point

PTsizeof
int32 PTsizeof(int32 pointID, char *fieldlist, int32 fldlevel[])

pointID IN: Point id returned by PTcreate or PTattach

fieldlist IN: Field names

fldlevel OUT: Level number of each field

Purpose Returns information on specified fields in point.

Return value Returns size in bytes of specified fields if successful or FAIL (-1)
otherwise. Typical reasons for failure are an improper point id or field
names.

Description This routine returns information about specified fields in a point
regardless of level.

Example In this example we return the size in bytes of the Label and Rainfall fields
in the 2nd point defined in the PTdeflevel routine.

size = PTsizeof(pointID2, "Label,Rainfall", fldlevel);

 The size variable will be 8 and the fldlevel = {1,2}.

FORTRAN integer*4 function ptsizeof(pointID, fieldlist, fldlevel)

 integer*4 pointid

 character*(*) fieldlist

 integer*4 fldlevel (*)

 The equivalent FORTRAN code for the example above is:

size = ptsizeof(pointid2, "Label,Rainfall", fldlevel)

 2-38 170-TP-606-002

Update Records in a Point Structure

PTupdatelevel
intn PTupdatelevel(int32 pointID, int32 level, char fieldlist, int32 nrec, int32 recs[], VOIDP

data)

pointID IN: Point id returned by PTcreate or PTattach

level IN: Level to update (0-based)

fieldlist IN: List of fields to update

nrec IN: Number of records to update

recs IN: Record number of records to update (0 - based)

data IN: Values to be written to the fields

Purpose Updates (corrects) data to a point level.

Return value Returns SUCCEED (0) if successful or FAIL (-1) otherwise. Typical
reasons for failure are an improper point id or unknown fieldname.

Description This routine updates the specified fields and records of a single level.

Example In this example we update records 0, 2, and 3 in the Temperature and
Mode fields in the first level in the point refered to by the point id,
pointID1.

int32 recs[3] = {0,2,3};

/* Fill Data Buffer */

status = PTupdatelevel(pointID1, 0, "Temperature,Mode", 3,

 recs, datbuf);

 The user may update a single record or all records in precisely the same
manner as that used in the PTreadlevel examples.

FORTRAN integer function

 ptuplev(pointid,level,fieldlist,nrec,recs,buffer)

 integer*4 pointid

 integer*4 level

 character*(*) fieldlist

 integer*4 nrec

 integer*4 recs(*)

 <valid type> buffer(*)

 2-39 170-TP-606-002

 The equivalent FORTRAN code for the example above is:

integer*4 recs(10)

recs(1) = 0

recs(2) = 2

recs(3) = 3

status = ptuplev(pointid1, 1, "Temperature,Mode", 3, recs,

 datbuf)

 2-40 170-TP-606-002

Write/Update Point Attribute

PTwriteattr
intn PTwriteattr(int32 pointID, char *attrname, int32 ntype, int32 count, VOIDP datbuf)

pointID IN: Point id returned by PTcreate or PTattach

attrname IN: Attribute name

ntype IN: Number type of attribute

count IN: Number of values to store in attribute

datbuf IN: Attribute values

Purpose Writes/Updates attribute in a point.

Return value Returns SUCCEED (0) if successful or FAIL (-1) otherwise. Typical
reasons for failure are an improper point id or number type.

Description If the attribute does not exist, it is created. If it does exist, then the value(s)
is (are) updated. The attribute is passed by reference rather than value in
order that a single routine suffice for all numerical types. Because of this
a literal numerical expression should not be used in the call.

Example In this example, we write a single precision (32 bit) floating point number
with the name "ScalarFloat" and the value 3.14:

f32 = 3.14;

status = PTwriteattr(pointid, "ScalarFloat", DFNT_FLOAT32,

 1, &f32);

 We can update this value by simply calling the routine again with the new
value:

f32 = 3.14159;

status = PTwriteattr(pointid, "ScalarFloat", DFNT_FLOAT32,

 1, &f32);

 2-41 170-TP-606-002

FORTRAN integer function ptwrattr(pointid, attrname,
ntype, count, datbuf)

 integer*4 pointid

 character*(*) attrname

 integer*4 ntype

 integer*4 count

 <valid type> datbuf(*)

 The equivalent FORTRAN code for the first example above is:

parameter (DFNT_FLOAT32=5)

f32 = 3.14

status = ptwrattr(pointid, "ScalarFloat", DFNT_FLOAT32, 1,

 f32)

 2-42 170-TP-606-002

Write New Records to a Point Level

PTwritelevel
intn PTwritelevel(int32 pointID, int32 level, int32 nrec, VOIDP data)

pointID IN: Point id returned by PTcreate or PTattach

level IN: Level to write (0-based)

nrec IN: Number of records to write

data IN: Values to be written to the field

Purpose Writes (appends) new records to a point level.

Return value Returns SUCCEED (0) if successful or FAIL (-1) otherwise. Typical
reasons for failure are an improper point id or level number.

Description This routine writes (appends) full records to a level. The data in each
record must be packed. Please refer to the section on Vdatas in the HDF
documentation. The input data buffer must be sufficient to fill the number
of records designated.

Example In this example we write 5 records to the first level in the point refered to
by the point id, pointID1.

;’/* Fill Data Buffer */

status = PTwritelevel(pointID1, 0, 5, datbuf);

FORTRAN integer function

 ptwrlev(pointid,level,nrec,data)

 integer*4 pointid

 integer*4 level

 integer*4 nrec

 <valid type> data(*)

 The equivalent FORTRAN code for the example above is:

status = ptwrlev(pointid1, 0, 5, datbuf)

2.1.2 Swath Interface Functions

This section contains an alphabetical listing of all the functions in the Swath interface. The
functions are alphabetized based on their C-language names.

 2-43 170-TP-606-002

Attach to an Existing Swath Structure

SWattach
int32 SWattach(int32 fid, char *swathname)

fid IN: Swath file id returned by SWopen

swathname IN: Name of swath to be attached

Purpose Attaches to an existing swath within the file.

Return value Returns the swath handle (swathID) if successful or FAIL (-1) otherwise.
Typical reasons for failure are an improper swath file id or swath name.

Description This routine attaches to the swath using the swathname parameter as the
identifier.

Example In this example, we attach to the previously created swath,
"ExampleSwath", within the HDF file, SwathFile.hdf, referred to by the
handle, fid:

swathID = SWattach(fid, "ExampleSwath");

 The swath can then be referenced by subsequent routines using the
handle, swathID.

FORTRAN integer*4 function swattach(fid,swathname)

 integer*4 fid

 character*(*) swathname

 The equivalent FORTRAN code for the example above is:

swathid = swattach(fid, "ExampleSwath")

 2-44 170-TP-606-002

Return Information About a Swath Attribute

SWattrinfo
intn SWattrinfo(int32swathID, char *attrname, int32 * numbertype, int32 *count)

swathID IN: Swath id returned by SWcreate or SWattach

attrname IN: Attribute name

numbertype OUT: Number type of attribute

count OUT: Number of total bytes in attribute

Purpose Returns information about a swath attribute

Return value Returns SUCCEED (0) if successful or FAIL (-1) otherwise.

Description This routine returns number type and number of elements (count) of a
swath attribute.

Example In this example, we return information about the ScalarFloat attribute.

status = SWattrinfo(swathID, "ScalarFloat",&nt,&count);

 The nt variable will have the value 5 and count will have the value 4.

FORTRAN integer function swattrinfo(swathid, attrname, ntype, count,)

 integer*4 swathid

 character*(*) attrname

 integer*4 ntype

 integer*4 count

 The equivalent FORTRAN code for the first example above is:

status = swattrinfo(swathid, "ScalarFloat",nt,count)

 2-45 170-TP-606-002

Close an HDF-EOS File

SWclose
intn SWclose(int32 fid)

fid IN: Swath file id returned by SWopen

Purpose Closes file.

Return value Returns SUCCEED (0) if successful or FAIL (-1) otherwise.

Description This routine closes the HDF swath file.

Example

status = swclose(fid);

FORTRAN integer function swclose(fid)

 integer*4 fid

 The equivalent FORTRAN code for the example above is:

status = swclose(fid)

 2-46 170-TP-606-002

Retreive Compression Information for Field

SWcompinfo
intn SWcompinfo(int32 swathID, char *fieldname, int32 *compcode, intn compparm[])

swathID IN: Swath id returned by SWcreate or SWattach

fieldname IN: Fieldname

compcode OUT: HDF compression code

compparm OUT: Compression parameters

Purpose Retrieves compression information about a field.

Return value Returns SUCCEED(0) if successful or FAIL(-1) otherwise.

Description This routine returns the compression code and compression parameters
for a given field.

Example To retreive the compression information about the Opacity field defined in
the SWdefcomp section:

status = SWcompinfo(swathID, “Opacity”, &compcode, compparm);

The compcode parameter will be set to 4 and compparm[0] to 5.

FORTRAN integer function swcompinfo(gridid,fieldname compcode, compparm)

 integer*4 swathid

character*(*) fieldname

 integer*4 compcode

integer compparm

 The equivalent FORTRAN code for the example above is:

status = swcompinfo(swathid, ‘Opacity’, compcode, compparm)

The compcode parameter will be set to 4 and compparm(1) to 5.

 2-47 170-TP-606-002

Create a New Swath Structure

SWcreate
int32 SWcreate(int32 fid, char *swathname)

fid IN: Swath file id returned by SWopen

swathname IN: Name of swath to be created

Purpose Creates a swath within the file.

Return value Returns the swath handle (swathID) if successful or FAIL (-1) otherwise.

Description The swath is created as a Vgroup within the HDF file with the name
swathname and class SWATH.

Example In this example, we create a new swath structure, ExampleSwath, in the
previously created file, SwathFile.hdf.

swathID = SWcreate(fid, "ExampleSwath");

 The swath structure is referenced by subsequent routines using the handle,
swathID.

FORTRAN integer*4 function swcreate(fid,swathname)

 integer*4 fid

 character*(*) swathname

 The equivalent FORTRAN code for the example above is:

swathid = swcreate(fid, "ExampleSwath")

 2-48 170-TP-606-002

Define a Longitude-Latitude Box Region for a Swath

SWdefboxregion
int32 SWdefboxregion(int32 swathID, float64 cornerlon[], float64 cornerlat[], int32 mode)

swathID IN: Swath id returned by SWcreate or SWattach

cornerlon IN: Longitude in decimal degrees of box corners

cornerlat IN: Latitude in decimal degrees of box corners

mode IN: Cross Track inclusion mode

Purpose Defines a longitude-latitude box region for a swath.

Return value Returns the swath region ID if successful or FAIL (-1) otherwise.

Description This routine defines a longitude-latitude box region for a swath. It returns
a swath region ID which is used by the SWextractregion routine to read
all the entries of a data field within the region. A cross track is within a
region if 1) its midpoint is within the longitude-latitude "box"
(HDFE_MIDPOINT), or 2) either of its endpoints is within the longitude-
latitude "box" (HDFE_ENDPOINT), or 3) any point of the cross track is
within the longitude-latitude "box" (HDFE_ANYPOINT), depending on
the inclusion mode designated by the user. All elements within an included
cross track are considered to be within the region even though a
particular element of the cross track might be outside the region. The
swath structure must have both Longitude and Latitude (or Colatitude)
fields defined

 Note: Users who are defining subset regions involving scenes with
overlaps should add a call to the routine in SWupdatescene after calling
this routine in order to get correctly defined region.

Example In this example, we define a region bounded by the 3 degrees longitude, 5
degrees latitude and 7 degrees longitude, 12 degrees latitude. We will
consider a cross track to be within the region if its midpoint is within the
region.

cornerlon[0] = 3.;

cornerlat[0] = 5.;

cornerlon[1] = 7.;

cornerlat[1] = 12.;

regionID = SWdefboxregion(swathID, cornerlon, cornerlat,

 HDFE_MIDPOINT);

 2-49 170-TP-606-002

FORTRAN integer*4 function swdefboxreg(swathid, cornerlon, cornerlat, mode)

 integer*4 swathid

 real*8 cornerlon

 real*8 cornerlat

 integer*4 mode

 The equivalent FORTRAN code for the example above is:

parameter (HDFE_MIDPOINT=0)

cornerlon(1) = 3.

cornerlat(1) = 5.

cornerlon(2) = 7.

cornerlat(2) = 12.

regionid = swdefboxreg(swathid, cornerlon, cornerlat,

 HDFE_MIDPOINT)

 2-50 170-TP-606-002

Set Swath Field Compression

SWdefcomp
intn SWdefcomp(int32 swathID, int32 compcode, intn compparm[])

swathID IN: Swath id returned by SWcreate or SWattach

compcode IN: HDF compression code

compparm IN: Compression parameters (if applicable)

Purpose Sets the field compression for all subsequent field definitions.

Return value Returns SUCCEED(0) if successful or FAIL(-1) otherwise.

Description This routine sets the HDF field compression for subsequent swath field
definitions. The compression does not apply to one-dimensional fields.
The compression schemes currently supported are: run length encoding
(HDFE_COMP_RLE = 1) , skipping Huffman (HDFE_COMP_SKPHUFF
= 3), deflate (gzip) (HDFE_COMP_DEFLATE=4) and no compression
(HDFE_COMP_NONE = 0, the default). Deflate compression requires a
single integer compression parameter in the range of one to nine with
higher values corresponding to greater compression. Compressed fields
are written using the standard SWwritefield routine, however, the entire
field must be written in a single call. Any portion of a compressed field
can then be accessed with the SWreadfield routine. Compression takes
precedence over merging so that multi-dimensional fields that are
compressed are not merged. The user should refer to the HDF Reference
Manual for a fuller explanation of the compression schemes and
parameters.

Example Suppose we wish to compress the Pressure using run length encoding, the
Opacity field using deflate compression, the Spectra field with skipping
Huffman compression, and use no compression for the Temperature field.

status = SWdefcomp(swathID, HDFE_COMP_RLE, NULL);

status = SWdefdatafield(swathID, "Pressure", "Track,Xtrack",

DFNT_FLOAT32, HDFE_NOMERGE);

compparm[0] = 5;

status = SWdefcomp(swathID, HDFE_COMP_DEFLATE, compparm);

status = SWdefdatafield(swathID, "Opacity", "Track,Xtrack",
DFNT_FLOAT32, HDFE_NOMERGE);

status = SWdefcomp(swathID, HDFE_COMP_SKPHUFF, NULL);

 2-51 170-TP-606-002

status = SWdefdatafield(swathID, "Spectra",
"Bands,Track,Xtrack", DFNT_FLOAT32, HDFE_NOMERGE);

status = SWdefcomp(swathID, HDFE_COMP_NONE, NULL);

status = SWdefdatafield(swathID, "Temperature", "Track,Xtrack",
DFNT_FLOAT32, HDFE_AUTOMERGE);

Note that the HDFE_AUTOMERGE parameter will be ignored in the Temperature field
definition.

FORTRAN integer function swdefcomp(swathid, compcode, compparm)

 integer*4 swathid

 integer compcode

integer compparm

 The equivalent FORTRAN code for the example above is:

parameter (HDFE_COMP_NONE=0)

parameter (HDFE_COMP_RLE=1)

parameter (HDFE_COMP_SKPHUFF=3)

parameter (HDFE_COMP_DEFLATE=4)

integer compparm(5)

status = swdefcomp(swathid, HDFE_COMP_RLE, compparm)

status = swdefdfld(swathid, "Pressure", "Track,Xtrack",

DFNT_FLOAT32, HDFE_NOMERGE)

compparm(1) = 5

status = swdefcomp(swathid, HDFE_COMP_DEFLATE, compparm)

status = swdefdfld(swathid, "Opacity", "Track,Xtrack",

DFNT_FLOAT32, HDFE_NOMERGE)

status = swdefcomp(swathid, HDFE_COMP_SKPHUFF, compparm)

status = swdefdfld(swathid, "Spectra", "Bands,Track,Xtrack",

DFNT_FLOAT32, HDFE_NOMERGE)

status = swdefcomp(swathid, HDFE_COMP_NONE, compparm)

status = swdefdfld(swathid, "Temperature", "Track,Xtrack",

DFNT_FLOAT32, HDFE_AUTOMERGE)

 2-52 170-TP-606-002

Define a New Data Field Within a Swath

SWdefdatafield
intn SWdefdatafield(int32 swathID, char *fieldname, char *dimlist, int32 numbertype, int32

merge)

swathID IN: Swath id returned by SWcreate or SWattach

fieldname IN: Name of field to be defined

dimlist IN: The list of data dimensions defining the field

numbertype IN: The number type of the data stored in the field

merge IN: Merge code (HDFE_NOMERGE (0) - no merge,
 HDFE_AUTOMERGE (1) -merge)

Note: Illegal characters are: “/” “;” “,”

Purpose Defines a new data field within the swath.

Return value Returns SUCCEED (0) if successful or FAIL (-1) otherwise. Typical
reason for failure is unknown dimension in the dimension list.

Description This routine defines geolocation fields to be stored in the swath. The
dimensions are entered as a string consisting of geolocation dimensions
separated by commas. They are entered in C order, that is, the last
dimension is incremented first. The API will attempt to merge into a single
object those fields that share dimensions and in case of multidimensional
fields, numbertype. Two and three dimensional fields will be merged into
a single three-dimensional object if the last two dimensions (in C order)
are equal. If the merge code for a field is set to HDF_NOMERGE (0) , the
API will not attempt to merge it with other fields. Because merging
breaks the one-to-one correspondence between HDF-EOS fields and HDF
SDS arrays, it should not be set if the user wishes to access the HDF-EOS
field directly using HDF routines or, for example, to create an HDF
attribute corresponding to the field.

Example In this example, we define a three dimensional data field named Spectra
with dimensions Bands, DataTrack, and DataXtrack:

status = SWdefdatafield(swathID, "Spectra",
 "Bands,DataTrack,DataXtrack", DFNT_FLOAT32,
 HDFE_AUTOMERGE);

 Note: To assure that the fields defined by SWdefdatafield are properly
established in the file, the swath should be detached (and then reattached)
before writing to any fields.

 2-53 170-TP-606-002

FORTRAN integer function swdefdfld(swathid, fieldname, dimlist, numbertype,merge)

 integer*4 swathid

 character*(*) fieldname

 character*(*) dimlist

 integer*4 numbertype

 integer*4 merge

 The equivalent FORTRAN code for the example above is:

parameter (DFNT_FLOAT32=5)

parameter (HDFE_AUTOMERGE=1)

status = swdefdfld(swathid, "Spectra",
 "DataXtrack,DataTrack,Bands", DFNT_FLOAT32,
 HDFE_AUTOMERGE)

 2-54 170-TP-606-002

Define a New Dimension Within a Swath

SWdefdim
intn SWdefdim(int32 swathID, char *fieldname, int32 dim)

swathID IN: swath returned by SWcreate or SWattach

fieldname IN: Name of dimension to be defined

dim IN: The size of the dimension

Purpose Defines a new dimension within the swath.

Return value Returns SUCCEED (0) if successful or FAIL (-1) otherwise. Typical
reason for failure is an improper swath id.

Note: Illegal characters are: “/” “;” “,”

Description This routine defines dimensions that are used by the field definition
routines (described subsequently) to establish the size of the field.

Example In this example, we define a track geolocation dimension, GeoTrack, of
size 2000, a cross track dimension, GeoXtrack, of size 1000 and two
corresponding data dimensions with twice the resolution of the
geolocation dimensions:
status = SWdefdim(swathID, "GeoTrack", 2000);

status = SWdefdim(swathID, "GeoXtrack", 1000);

status = SWdefdim(swathID, "DataTrack", 4000);

status = SWdefdim(swathID, "DataXtrack", 2000);

status = SWdefdim(swathID, "Bands", 5);

 To specify an unlimited dimension which can be used to define an
appendable array, the dimension value should be set to zero or
equivalently, SD_UNLIMITED:

status = SWdefdim(swathID, "Unlim", SD_UNLIMITED);

FORTRAN integer function swdefdim(swathid,fieldname,dim)

 integer*4 swathid

 character*(*) fieldname

 integer*4 dim

 The equivalent FORTRAN code for the first example above is:

status = swdefdim(swathid, "GeoTrack", 2000)

 2-55 170-TP-606-002

 The equivalent FORTRAN code for the unlimited dimension example
above is:
parameter (SD_UNLIMITED=0)

status = swdefdim(swathid, "Unlim", SD_UNLIMITED)

 2-56 170-TP-606-002

Define Mapping Between Geolocation and Data
Dimensions

SWdefdimmap
intn SWdefdimmap(int32 swathID, char *geodim, char *datadim, int32 offset, int32 increment)

swathID IN: Swath id returned by SWcreate or SWattach

geodim IN: Geolocation dimension name

datadim IN: Data dimension name

offset IN: The offset of the geolocation dimension with respect to the data
 dimension

increment IN: The increment of the geolocation dimension with respect to the
 data dimension

Purpose Defines monotonic mapping between the geolocation and data
dimensions.

Return value Returns SUCCEED (0) if successful or FAIL (-1) otherwise. Typical
reason for failure is incorrect geolocation or data dimension name.

Description Typically the geolocation and data dimensions are of different size
(resolution). This routine established the relation between the two where
the offset gives the index of the data element (0-based) corresponding to
the first geolocation element and the increment gives the number of data
elements to skip for each geolocation element. If the geolocation
dimension begins "before" the data dimension, then the offset is negative.
Similarly, if the geolocation dimension has higher resolution than the data
dimension, then the increment is negative.

Example In this example, we establish that (1) the first element of the GeoTrack
dimension corresponds to the first element of the DataTrack dimension
and the data dimension has twice the resolution as the geolocation
dimension, and (2) the first element of the GeoXtrack dimension
corresponds to the second element of the DataTrack dimension and the
data dimension has twice the resolution as the geolocation dimension:

status = SWdefdimmap(swathID, "GeoTrack", "DataTrack", 0,

 2);

status = SWdefdimmap(swathID, "GeoXtrack", "DataXtrack", 1,

 2);

 2-57 170-TP-606-002

FORTRAN integer function

 swdefmap(swathid,geodim,datadim,offset,increment)

integer*4 swathid

 character*(*) geodim

 character*(*) datadim

 integer*4 offset

 integer*4 increment

 The equivalent FORTRAN code for the second example above is:

status = swdefmap(swathid, "GeoTrack", "DataTrack", 0, 2)

status = swdefmap(swathid, "GeoXtrack", "DataXtrack", 1, 2)

 2-58 170-TP-606-002

Define a New Geolocation Field Within a Swath

SWdefgeofield
intn SWdefgeofield(int32 swathID, char *fieldname, char *dimlist, int32 numbertype, int32

merge)

swathID IN: Swath id returned by SWcreate or SWattach

fieldname IN: Name of field to be defined

dimlist IN: The list of geolocation dimensions defining the field

numbertype IN: The number type of the data stored in the field

merge IN: Merge code (HDFE_NOMERGE (0) - no merge,
 HDFE_AUTOMERGE (1) -merge)

Purpose Defines a new geolocation field within the swath.

Return value Returns SUCCEED (0) if successful or FAIL (-1) otherwise. Typical
reason for failure is unknown dimension in the dimension list.

Description This routine defines geolocation fields to be stored in the swath. The
dimensions are entered as a string consisting of geolocation dimensions
separated by commas. They are entered in C order, that is, the last
dimension is incremented first. The API will attempt to merge into a single
object those fields that share dimensions and in case of multidimensional
fields, numbertype. Two and three dimensional fields will be merged into
a single three-dimensional object if the last two dimensions (in C order
are equal). If the merge code for a field is set to 0, the API will not attempt
to merge it with other fields. Fields using the unlimited dimension will not
be merged. Because merging breaks the one-to-one correspondence
between HDF-EOS fields and HDF SDS arrays, it should not be set if the
user wishes to access the HDF-EOS field directly using HDF routines or,
for example, to create an HDF attribute corresponding to the field.

Example In this example, we define the geolocation fields, Longitude and Latitude
with dimensions GeoTrack and GeoXtrack and containing 4 byte floating
point numbers. We allow these fields to be merged into a single object:

status = SWdefgeofield(swathID, "Longitude",

 "GeoTrack,GeoXtrack", DFNT_FLOAT32, HDFE_AUTOMERGE);

status = SWdefgeofield(swathID, "Latitude",

 "GeoTrack,GeoXtrack", DFNT_FLOAT32, HDFE_AUTOMERGE);

 2-59 170-TP-606-002

Note: To assure that the fields defined by SWdefgeofield are properly established in the
file, the swath should be detached (and then reattached) before writing to
any fields.

FORTRAN integer function swdefgfld(swathid, fieldname, dimlist, numbertype,
merge)

integer*4 swathid

 character*(*) fieldname

 character*(*) dimlist

 integer*4 numbertype

 integer*4 merge

 The equivalent FORTRAN code for the first example above is:

parameter (DFNT_FLOAT32=5)

parameter (HDFE_AUTOMERGE=1)

status = SWdefgeofield(swathID, "Longitude",

 "Geotrack,GeoXtrack", DFNT_FLOAT32, HDFE_AUTOMERGE)

 The dimensions are entered in FORTRAN order with the first dimension
incremented first.

 2-60 170-TP-606-002

Define Indexed Mapping Between Geolocation and
Data Dimension

SWdefidxmap
intn SWdefidxmap(int32 swathID, char *geodim, char *datadim, int32 index[]),

swathID IN: Swath id returned by SWcreate or SWattach

geodim IN: Geolocation dimension name

datadim IN: Data dimension name

index IN: The array containing the indices of the data dimension to which
 each geolocation element corresponds.

Purpose Defines a non-regular mapping between the geolocation and data
dimension.

Return value Returns SUCCEED (0) if successful or FAIL (-1) otherwise. Typical
reason for failure is incorrect geolocation or data dimension name.

Description If there does not exist a regular (linear) mapping between a geolocation
and data dimension, then the mapping must be made explicit. Each
element of the index array, whose dimension is given by the geolocation
size, contains the element number (0-based) of the corresponding data
dimension.

Example In this example, we consider the (simple) case of a geolocation dimension,
IdxGeo of size 5 and a data dimension IdxData of size 8.
int32 index[5] = {0,2,3,6,7};

status = SWdefidxmap(swathID, "IdxGeo", "IdxData", index);

 In this case the 0th element of IdxGeo will correspond to the 0th element
of IdxData, the 1st element of IdxGeo to the 2nd element of IdxData, etc.

FORTRAN integer function

 swdefimap(swathid, geodim, datadim, index)

 integer*4 swathid

 character*(*) geodim

 character*(*) datadim

 integer*4 index (*)

 2-61 170-TP-606-002

 The equivalent FORTRAN code for the example above is:

int32 index[5] = {0,2,3,6,7};

status = swidefmap(swathid, "IdxGeo", "IdxData", index)

 Note: The index array should be 0-based.

 2-62 170-TP-606-002

Define a Time Period of Interest

SWdeftimeperiod

int32 SWdeftimeperiod(int32swathID, float64 starttime , float64 stoptime
 int32 mode)

swathID IN: Swath id returned by SWcreate or SWattach

starttime IN: Start time of period

stoptime IN: Stop time of period

mode IN: Cross Track inclusion mode

Purpose Defines a time period for a swath.

Return value Returns the swath period ID if successful or FAIL (-1) otherwise.

Description This routine defines a time period for a swath. It returns a swath period
ID which is used by the SWextractperiod routine to read all the entries of
a data field within the time period. A cross track is within a time period if
1) its midpoint is within the time period "box", or 2) either of its endpoints
is within the time period "box", or 3) any point of the cross track is within
the time period "box", depending on the inclusion mode designated by the
user. All elements within an included cross track are considered to be
within the time period even though a particular element of the cross track
might be outside the time period. The swath structure must have the Time
field defined

Example In this example, we define a time period with a start time of 35232487.2
and a stop time of 36609898.1.We will consider a cross track to be within
the time period if either one of the time values at the endpoints of a cross
track are within the time period.

starttime = 35232487.2;

stoptime = 36609898.1;

periodID = SWdeftimeperiod(swathID, starttime, stoptime,

 HDFE_ENDPOINT);

 2-63 170-TP-606-002

FORTRAN integer*4 function swdeftmeper(swathid, starttime, stoptime, mode)

 integer*4 swathid

 real*8 starttime

 real*8 stoptime

 integer*4 mode

 The equivalent FORTRAN code for the example above is:

parameter (HDFE_ENDPOINT=1)

starttime = 35232487.2

stoptime = 36609898.1

periodID = swdeftmeper(swathID, starttime, stoptime, HDFE_ENDPOINT)

 2-64 170-TP-606-002

Define a Vertical Subset Region

SWdefvrtregion
int32 SWdefvrtregion(int32 swathID, int32 regionID, char *vertObj, float64 range[])

swathID IN: Swath id returned by SWcreate or SWattach

regionID IN: Region (or period) id from previous subset call

vertObj IN: Dimension or field to subset by

range IN: Minimum and maximum range for subset

Purpose Subsets on a monotonic field or contiguous elements of a dimension.

Return value Returns the swath region ID if successful or FAIL (-1) otherwise.

Description Whereas the SWdefboxregion and SWdeftimeperiod routines perform
subsetting along the “Track” dimension, this routine allows the user to
subset along any dimension. The region is specified by a set of minimum
and maximum values and can represent either a dimension index (case 1)
or field value range(case 2) . In the second case, the field must be one-
dimensional and the values must be monotonic (strictly increasing or
decreasing) in order that the resulting dimension index range be
contiguous. (For the current version of this routine, the second option is
restricted to fields with number type: INT16, INT32, FLOAT32,
FLOAT64.) This routine may be called after SWdefboxregion or
SWdeftimeperiod to provide both geographic or time and “vertical”
subsetting . In this case the user provides the id from the previous subset
call. (This same id is then returned by the function.) This routine may
also be called “stand-alone” by setting the region ID to
HDFE_NOPREVSUB (-1).

 This routine may be called up to eight times with the same region ID. It
this way a region can be subsetted along a number of dimensions.

 The SWregioninfo and SWextractregion routines work as before, however
because there is no mapping performed between geolocation dimensions
and data dimensions the field to be subsetted, (the field specified in the
call to SWregioninfo and SWextractregion) must contain the dimension
used explicitly in the call to SWdefvrtregion (case 1) or the dimension of
the one-dimensional field (case 2).

 2-65 170-TP-606-002

Example Suppose we have a field called Pressure of dimension Height (= 10) whose
values increase from 100 to1000. If we desire all the elements with
values between 500 and 800, we make the call:
range[0] = 500.;

range[1] = 800.;

regionID = SWdefvrtregion(swathID, HDFE_NOPREVSUB, “Pressure”,
range);

The routine determines the elements in the Height dimension which correspond to the
values of the Pressure field between 500 and 800.

If we wish to specify the subset as elements 2 through 5 (0 - based) of the Height
dimension, the call would be:
range[0] = 2;

range[1] = 5;

regionID = SWdefvrtregion(swathID, HDFE_NOPREVSUB,
“DIM:Height”, range);

The “DIM:” prefix tells the routine that the range corresponds to elements of a
dimension rather than values of a field.

 In this example, any field to be subsetted must contain the Height
dimension.

If a previous subset region or period was defined with id, subsetID, that we wish to refine
further with the vertical subsetting defined above we make the call:

regionID = SWdefvrtregion(swathID, subsetID, “Pressure”,

range);

The return value, regionID is set equal to subsetID. That is, the subset region is modified
rather than a new one created.

We can further refine the subset region with another call to the routine:
freq[0] = 1540.3;

freq[1] = 1652.8;

 regionID = SWdefvrtregion(swathID, regionID, “FreqRange”,
freq);

FORTRAN integer*4 function swdefvrtreg(swathid, regionid, vertobj, range)

 integer*4 swathid

 integer*4 regionid

character*(*) vertobj

 real*8 range

 The equivalent FORTRAN code for the examples above is:
parameter (HDFE_NOPREVSUB=-1)

 2-66 170-TP-606-002

range(1) = 500.

range(2) = 800.

regionid = swdefvrtreg(swathid, HDFE_NOPREVSUB, “Pressure”,
range)

range(1) = 3 ! Note 1-based element numbers

range(2) = 6

regionid = swdefvrtreg(swathid, HDFE_NOPREVSUB, “DIM:Height”,
range)

regionid = swdefvrtreg(swathid, subsetid, “Pressure”, range)

regionid = swdefvrtreg(swathid, regionid, “FreqRange”, freq)

 2-67 170-TP-606-002

Detach from a Swath Structure

SWdetach
intn SWdetach(int32 swathID)

swathID IN: Swath id returned by SWcreate or SWattach

Purpose Detaches from swath interface.

Return value Returns SUCCEED (0) if successful or FAIL (-1) otherwise.

Description This routine should be run before exiting from the swath file for every
swath opened by SWcreate or SWattach.

Example In this example, we detach the swath structure, ExampleSwath:

status = SWdetach(swathID);

FORTRAN integer function swdetach(swathid)

 integer*4 swathid

 The equivalent FORTRAN code for the example above is:

status = swdetach(swathid)

 2-68 170-TP-606-002

Retrieve Size of Specified Dimension

SWdiminfo
int32 SWdiminfo(int32 swathID, char *dimname)

swathID IN: Swath id returned by SWcreate or SWattach

dimname IN: Dimension name

Purpose Retrieve size of specified dimension.

Return value Size of dimension if successful or FAIL (-1) otherwise. If -1, could signify
an improper swath id or dimension name.

Description This routine retrieves the size of specified dimension.

Example In this example, we retrieve information about the dimension,
"GeoTrack":

dimsize = SWdiminfo(swathID, "GeoTrack");

 The return value, dimsize, will be equal to 2000.

FORTRAN integer*4 function swdiminfo(swathid,dimname)

 integer*4 swathid

 character*(*) dimname

 The equivalent FORTRAN code for the example above is:

dimsize = swdiminfo(swathid, "GeoTrack")

 2-69 170-TP-606-002

Duplicate a Region or Period

SWdupregion
int32 SWdupregion(int32 regionID)

regionID IN: Region or period id returned by SWdefboxregion,
SWdeftimeperiod, or SWdefvrtregion.

Purpose Duplicates a region.

Return value Returns new region or period ID if successful or FAIL (-1) otherwise.

Description This routine copies the information stored in a current region or period to
a new region or period and generates a new id. It is usefully when the
user wishes to further subset a region (period) in multiple ways.

Example In this example, we first subset a swath with SWdefboxregion, duplicate
the region creating a new region ID, regionID2, and then perform two
different vertical subsets of these (identical) geographic subset regions:

regionID = SWdefboxregion(swathID, cornerlon, cornerlat,

 HDFE_MIDPOINT);

regionID2 = SWdupregion(regionID);

regionID = SWdefvrtregion(swathID, regionID, “Pressure”,

rangePres);

regionID2 = SWdefvrtregion(swathID, regionID2, “Temperature”,

rangeTemp);

FORTRAN integer*4 swdupreg(regionid)

 integer*4 regionid

 The equivalent FORTRAN code for the example above is:

parameter (HDFE_MIDPOINT=0)

regionid = swdefboxreg(swathid, cornerlon, cornerlat,

 HDFE_MIDPOINT)

regionid2 = swdupreg(regionid)

regionid = swdefvrtreg(swathid, regionid, ‘Pressure’,

rangePres)

regionid2 = swdefvrtreg(swathid, regionid2, ‘Temperature’,

rangeTemp)

 2-70 170-TP-606-002

Read Data from a Defined Time Period

SWextractperiod

intn SWextractperiod(int32 swathID, int32 periodID, char * fieldname, int32
 external_mode, VOIDP buffer)

swathID IN: Swath id returned by SWcreate or SWattach

periodID IN: Period id returned by SWdeftimeperiod

fieldname IN: Field to subset

external_mode IN: External geolocation mode

buffer OUT: Data buffer

Purpose Extracts (reads) from subsetted time period.

Return value Returns SUCCEED (0) if successful or FAIL (-1) otherwise.

Description This routine reads data into the data buffer from the subsetted time
period. Only complete crosstracks are extracted. If the external_mode flag
is set to HDFE_EXTERNAL (1) then the geolocation fields and the data
field can be in different swaths. If set to HDFE_INTERNAL (0), then
these fields must be in the same swath structure.

Example In this example, we read data within the subsetted time period defined in
SWdeftimeperiod from the Spectra field. Both the geoloction fields and the
Spectra data field are in the same swath.

status = SWextractperiod(SWid, periodID, "Spectra",

 HDFE_INTERNAL, datbuf);

FORTRAN integer function swextper(periodid, fieldname, external_mode, buffer)

 integer*4 periodid

 character*(*) fieldname

 integer*4 external_mode

 <valid type> buffer(*)

 The equivalent FORTRAN code for the example above is:

parameter (HDFE_INTERNAL=0)

status = swextper(periodid, "Spectra", HDFE_INTERNAL, datbuf)

 2-71 170-TP-606-002

Read Data from a Geographic Region

SWextractregion
intn SWextractregion(int32 swathID, int32 regionID, char * fieldname, int32 external_mode,

VOIDP buffer)

swathID IN: Swath id returned by SWcreate or SWattach

regionID IN: Region id returned by SWdefboxregion

fieldname IN: Field to subset

external_mode IN: External geolocation mode

buffer OUT: Data buffer

Purpose Extracts (reads) from subsetted region.

Return value Returns SUCCEED (0) if successful or FAIL (-1) otherwise.

Description This routine reads data into the data buffer from the subsetted region.
Only complete crosstracks are extracted. If the external_mode flag is set
to HDFE_EXTERNAL (1) then the geolocation fields and the data field
can be in different swaths. If set to HDFE_INTERNAL (0), then these
fields must be in the same swath structure.

Example In this example, we read data within the subsetted region defined in
SWdefboxregion from the Spectra field. Both the geoloction fields and the
Spectra data field are in the same swath.
status = SWextractregion(SWid, regionID, "Spectra",
 HDFE_INTERNAL, datbuf);

FORTRAN integer function swextreg(swathid, regionid, fieldname, external_mode,
buffer)

 integer*4 swathid

 integer*4 regionid

character*(*) fieldname

 integer*4 external_mode

 <valid type> buffer(*)

 The equivalent FORTRAN code for the example above is:

parameter (HDFE_INTERNAL=0)

status = swextreg(swathid, regionid, "Spectra",

HDFE_INTERNAL, datbuf)

 2-72 170-TP-606-002

Retrieve Information About a Swath Field

SWfieldinfo
intn SWfieldinfo(int32 swathID, char *fieldname, int32 *rank, int32 dims[], int32 *numbertype,

char *dimlist)

swathID IN: Swath id returned by SWcreate or SWattach

fieldlname IN: Fieldname

rank OUT: Rank of field

dims OUT: Array containing the dimension sizes of the field

numbertype OUT: Pointer to the numbertype of the field

dimlist OUT: List of dimensions in field

Purpose Retrieve information about a specific geolocation or data field in the
swath.

Return value Returns SUCCEED (0) if successful or FAIL (-1) othwerwise. A typical
reason for failure is the specified field does not exist.

Description This routine retrieves information on a specific data field.

Example In this example, we retrieve information about the Spectra data fields:

status = SWfieldinfo(swathID, "Spectra", &rank, dims,

 numbertype, dimlist);

 The return parameters will have the following values:

rank=3, numbertype=5, dims[3]={5,4000,2000} and dimlist=”Bands, DataTrack,
DataXtrack”

 If one of the dimensions in the field is appendable, then the current value
for that dimension will be returned in the dims array.

 2-73 170-TP-606-002

FORTRAN integer function swfldinfo(swathid, fieldname, rank, dims, numbertype,
dimlist)

 integer*4 swathid

 character*(*) fieldname

 integer*4 rank

 integer*4 dims(*)

 integer*4 numbertype

 integer*4 dimlist

 The equivalent FORTRAN code for the example above is:

status = swfldinfo(swathid, "Spectra", rank, dims, numbertype,

dimlist)

 The return parameters will have the following values:

 rank=3, numbertype=5, dims[3]={2000,4000,5} and
dimlist=”DataXtrack, DataTrack,Bands"

 Note that the dimensions array and dimension list are in FORTRAN order.

 2-74 170-TP-606-002

Get Fill Value for a Specified Field

SWgetfillvalue
intn SWgetfillvalue(int32 swathID, char *fieldname, VOIDP fillvalue)

swathID IN: Swath id returned by SWcreate or SWattach

fieldname IN: Fieldname

fillvalue OUT: Space allocated to store the fill value

Purpose Retrieves fill value for the specified field.

Return value Returns SUCCEED (0) if successful or FAIL (-1) otherwise. Typical
reasons for failure are an improper swath id or number type.

Description It is assumed the number type of the fill value is the same as the field.

Example In this example, we get the fill value for the "Temperature" field:

status = SWgetfillvalue(swathID, "Temperature", &tempfill);

FORTRAN integer function

 swgetfill(swathid,fieldname,fillvalue)

 integer*4 swathid

 character*(*) fieldname

 <valid type> fillvalue(*)

 The equivalent FORTRAN code for the example above is:

status = swgetfill(swathid, "Temperature", tempfill)

 2-75 170-TP-606-002

Retrieve type of dimension mapping when first
dimension is geodim

SWgeomapinfo
intn SWgeomapinfo(int32 swathID, char *geodim)

swathID IN: Swath id returned by SWcreate or SWattach

geodim IN: Dimension name

Purpose Retrieve type of dimension mapping for a dimension.

Return value Returns (2) for indexed mapping, (1) for regular mapping, (0) if dimension
is not mapped, or FAIL (-1) otherwise.

Description This routine checks the type of mapping (regular or indexed).

Example In this example, we retrieve information about the type of mapping
between the “IdxGeo” and “IdxData” dimensions, defined by
Swdefidxmap.

Regmap = SWgeomapinfo(swathID, geodim);

 We will have regmap = 2 for indexed mapping between the “IdxGeo” and
“IdxData” dimensions.

 NOTE: If the dimension has been mapped regular and indexed, the
function will return a value of 3.

FORTRAN integer function swgmapinfo(swathid,geodim)

 integer*4 swathid

 character*(*) geodim

 The equivalent FORTRAN code for the example above is:

status = swgmapinfo(swathid, geodim)

 2-76 170-TP-606-002

Retrieve Indexed Geolocation Mapping

SWidxmapinfo
int32 SWidxmapinfo(int32 swathID, char *geodim, char *datadim, int32 index[])

swathID IN: Swath id returned by SWcreate or SWattach

geodim IN: Indexed Geolocation dimension name

datadim IN: Indexed Data dimension name

index OUT: Index mapping array

Purpose Retrieve indexed array of specified geolocation mapping.

Return value Returns size of indexed array if successful or FAIL (-1) otherwise. A
typical reason for failure is the specified mapping does not exist.

Description This routine retrieves the size of the indexed array and the array of
indexed elements of the specified geolocation mapping.

Example In this example, we retrieve information about the indexed mapping
between the "IdxGeo" and "IdxData" dimensions:

idxsz = SWidxmapinfo(swathID, "IdxGeo", "IdxData", index);

 The variable, idxsz, will be equal to 5 and index[5] = {0,2,3,6,7}.

FORTRAN integer*4 function swimapinfo(swathid, geodim, datadim, index)

 integer*4 swathid

 character*(*) geodim

 character*(*) datadim

 integer*4 index(*)

 The equivalent FORTRAN code for the example above is:

status = swimapinfo(swathid, "IdxGeo", "IdxData", index)

 2-77 170-TP-606-002

Retrieve Information Swath Attributes

SWinqattrs
int32 SWinqattrs(int32 swathID, char *attrlist, int32 *strbufsize)

swathID IN: Swath id returned by SWcreate or SWattach

attrlist OUT: Attribute list (entries separated by commas)

strbufsize OUT: String length of attribute list

Purpose Retrieve information about attributes defined in swath.

Return value Number of attributes found if successful or FAIL (-1) otherwise.

Description The attribute list is returned as a string with each attribute name
separated by commas. If attrlist is set to NULL, then the routine will
return just the string buffer size, strbufsize. This variable does not count
the null string terminator.

Example In this example, we retrieve information about the attributes defined in a
swath structure. We assume that there are two attributes stored, attrOne
and attr_2:

nattr = SWinqattrs(swathID, NULL, &strbufsize);

 The parameter, nattr, will have the value 2 and strbufsize will have value
14.

nattr = SWinqattrs(swathID, attrlist, &strbufsize);

 The variable, attrlist, will be set to:

 "attrOne,attr_2".

FORTRAN integer*4 function swinqattrs(swathid,attrlist,strbufsize)

 integer*4 swathid

 character*(*) attrlist

 integer*4 strbufsize

 The equivalent FORTRAN code for the example above is:

nattr = SWinqattrs(swathID, attrlist, &strbufsize)

 2-78 170-TP-606-002

Retrieve Information About Data Fields Defined in
Swath

SWinqdatafields
int32 SWinqdatafields(int32 swathID, char *fieldlist, int32 rank[], int32 numbertype[])

swathID IN: Swath id returned by SWcreate or SWattach

fieldlist OUT: Listing of data fields (entries separated by commas)

rank OUT: Array containing the rank of each data field

numbertype OUT: Array containing the numbertype of each data field

Purpose Retrieve information about all of the data fields defined in swath.

Return value Number of data fields found if successful or FAIL (-1) otherwise. A typical
reason for failure is an improper swath id.

Description The field list is returned as a string with each data field separated by
commas. The rank and numbertype arrays will have an entry for each
field. Output parameters set to NULL will not be returned.

Example In this example we retrieve information about the data fields:

nflds = SWinqdatafields(swathID, fieldlist, rank, numbertype);

 The parameter, fieldlist, will have the value:

 "Spectra" with ndim = 1, rank[1]={3}, numbertype[1]={5}

FORTRAN integer*4 function swinqdflds(swathid, fieldlist, rank, numbertype)

 integer*4 swathid

 character*(*) fieldlist

 integer*4 rank(*)

 integer*4 numbertype(*)

 The equivalent FORTRAN code for the example above is:

nflds = swinqdflds(swathid, fieldlist, rank, numbertype)

 2-79 170-TP-606-002

Retrieve Information About Dimensions Defined in
Swath

SWinqdims
int32 SWinqdims(int32 swathID, char *dimname, int32 dims[])

swathID IN: Swath id returned by SWcreate or SWattach

dimname OUT: Dimension list (entries separated by commas)

dims OUT: Array containing size of each dimension

Purpose Retrieve information about all of the dimensions defined in swath.

Return value Number of dimension entries found if successful or FAIL (-1) otherwise. A
typical reason for failure is an improper swath id.

Description The dimension list is returned as a string with each dimension name
separated by commas. Output parameters set to NULL will not be
returned.

Example In this example, we retrieve information about the dimensions defined in
the ExampleSwath structure:

ndims = SWinqdims(swathID, dimname, dims);

 The parameter, dimname, will have the value:

 "GeoTrack,GeoXtrack,DataTrack,DataXtrack,Bands,Unlim"

 with ndims = 5, dims[5]={2000,1000,4000,2000,5,0}

FORTRAN integer*4 function swinqdims(swathid,dimname,dims)

 integer*4 swathid

 character*(*) dimname

 integer*4 dims(*)

 The equivalent FORTRAN code for the example above is:

ndims = swinqdims(swathid, dimname, dims)

 2-80 170-TP-606-002

Retrieve Information About Geolocation Fields
Defined in Swath

SWinqgeofields
int32 SWinqgeofields(int32 swathID, char *fieldlist, int32 rank[], int32 numbertype[])

swathID IN: Swath id returned by SWcreate or SWattach

fieldlist OUT: Listing of geolocation fields (entries separated by commas)

rank OUT: Array containing the rank of each geolocation field

numbertype OUT: Array containing the numbertype of each geolocation field

Purpose Retrieve information about all of the geolocation fields defined in swath.

Return value Number of geolocation fields found if successful or FAIL (-1) otherwise. A
typical reason for failure is an improper swath id.

Description The field list is returned as a string with each geolocation field separated
by commas. The rank and numbertype arrays will have an entry for each
field. Output parameters set to NULL will not be returned.

Example In this example, we retrieve information about the geolocation fields:

nflds = SWinqgeofields(swathID, fieldlist, rank, numbertype);

 The parameter, fieldlist, will have the value: "Longitude,Latitude"with
nflds = 2, rank[2]={2,2}, numbertype[2]={5,5}

FORTRAN integer*4 function swinqgflds(swathid, fieldlist, rank, numbertype)

 integer*4 swathid

 character*(*) fieldlist

 integer*4 rank(*)

 integer*4 numbertype(*)

 The equivalent FORTRAN code for the example above is:

nflds = swinqgflds(swathid, fieldlist, rank, numbertype)

 2-81 170-TP-606-002

Retrieve Information About Indexed Mappings
Defined in Swath

SWinqidxmaps
int32 SWinqidxmaps(int32 swathID, char *idxmap, int32 idxsizes[])

swathID IN: Swath id returned by SWcreate or SWattach

idxmap OUT: Indexed Dimension mapping list (entries separated by commas)

idxsizes OUT: Array containing the sizes of the corresponding index arrays.

Purpose Retrieve information about all of the indexed geolocation/data mappings
defined in swath.

Return value Number of indexed mapping relations found if successful or FAIL (-1)
otherwise. A typical reason for failure is an improper swath id.

Description The dimension mapping list is returned as a string with each mapping
separated by commas. The two dimensions in each mapping are separated
by a slash (/). Output parameters set to NULL, will not be returned.

Example In this example. we retrieve information about the indexed dimension
mappings:

nidxmaps = SWinqidxmaps(swathID, idxmap, idxsizes);

 The variable, idxmap, will contain the string:

 "IdxGeo/IdxData" with nidxmaps = 1 and idxsizes[1]={5}.

FORTRAN integer*4 function

 swinqimaps(swathid,dimmap,idxsizes)

 integer*4 swathid

 character*(*) dimmap

 integer*4 idxsizes(*)

 The equivalent FORTRAN code for the example above is:

nidxmaps = swinqimaps(swathid, dimmap, idxsizes)

 2-82 170-TP-606-002

Retrieve Information About Dimension Mappings
Defined in Swath

SWinqmaps
int32 SWinqmaps(int32 swathID, char *dimmap, int32 offset[], int32 increment[])

swathID IN: Swath id returned by SWcreate or SWattach

dimmap OUT: Dimension mapping list (entries separated by commas)

offset OUT: Array containing the offset of each geolocation relation

increment OUT: Array containing the increment of each geolocation relation

Purpose Retrieve information about all of the (non-indexed) geolocation relations
defined in swath.

Return value Number of geolocation relation entries found if successful or FAIL (-1)
otherwise. A typical reason for failure is an improper swath id.

Description The dimension mapping list is returned as a string with each mapping
separated by commas. The two dimensions in each mapping are separated
by a slash (/). Output parameters set to NULL will not be returned.

Example In this example, we retrieve information about the dimension mappings in
the ExampleSwath structure:

nmaps = SWinqmaps(swathID, dimmap, offset, increment);

 The variable, dimmap, will contain the string:
"GeoTrack/DataTrack,GeoXtrack/DataXtrack" with nmaps = 2,
offset[2]={0,1} and increment[2]={2,2}.

FORTRAN integer*4 function

 swinqmaps(swathid,dimmap,offset,increment)

 integer*4 swathid

 character*(*) dimmap

 integer*4 offset(*)

 integer*4 increment(*)

 The equivalent FORTRAN code for the example above is:

nmaps = swinqmaps(swathid, dimmap, offset, increment)

 2-83 170-TP-606-002

Retrieve Swath Structures Defined in HDF-EOS File

SWinqswath
int32 SWinqswath(char * filename, char *swathlist, int32 *strbufsize)

filename IN: HDF-EOS filename

swathlist OUT: Swath list (entries separated by commas)

strbufsize OUT: String length of swath list

Purpose Retrieves number and names of swaths defined in HDF-EOS file.

Return value Number of swaths found if successful or FAIL (-1) otherwise.

Description The swath list is returned as a string with each swath name separated by
commas. If swathlist is set to NULL, then the routine will return just the
string buffer size, strbufsize. If strbufsize is also set to NULL, the routine
returns just the number of swaths. Note that strbufsize does not count the
null string terminator.

Example In this example, we retrieve information about the swaths defined in an
HDF-EOS file, HDFEOS.hdf. We assume that there are two swaths
stored, SwathOne and Swath_2:

nswath = SWinqswath(“HDFEOS.hdf”, NULL, &strbufsize);

 The parameter, nswath, will have the value 2 and strbufsize will have
value 16.

nswath = SWinqswath(“HDFEOS.hdf”, swathlist, &strbufsize);

 The variable, swathlist, will be set to:

 “SwathOne,Swath_2”.

FORTRAN integer*4 function swinqswath(filename,swathlist,strbufsize)

 character*(*) filename

 character*(*) swathlist

integer*4 strbufsize

 The equivalent FORTRAN code for the example above is:

nswath = SWinqswath(“HDFEOS.hdf”, swathlist, &strbufsize)

 2-84 170-TP-606-002

Retrieve Offset and Increment of Specific Dimension
Mapping

SWmapinfo
intn SWmapinfo(int32 swathID, char *geodim, char *datadim, int32 offset, int32 increment))

swathID IN: Swath id returned by SWcreate or SWattach

geodim IN: Geolocation dimension name

datadim IN: Data dimension name

offset OUT: Mapping offset

increment OUT: Mapping increment

Purpose Retrieve offset and increment of specific monotonic geolocation mapping.

Return value Returns SUCCEED (0) if successful or FAIL (-1) otherwise. A typical
reason for failure is the specified mapping does not exist.

Description This routine retrieves offset and increment of the specified geolocation
mapping.

Example In this example, we retrieve information about the mapping between the
GeoTrack and DataTrack dimensions:

status = SWmapinfo(swathID, "GeoTrack", "DataTrack",

 &offset, &increment);

 The variable offset will be 0 and increment 2.

FORTRAN integer function swmapinfo(swathid, geodim, datadim, offset, increment)

 integer*4 swathid

 character*(*) geodim

 character*(*) datadim

 integer*4 offset

 integer*4 increment

 The equivalent FORTRAN code for the example above is:

status = swmapinfo(swathid, "GeoTrack", "DataTrack",

 offset, increment)

 2-85 170-TP-606-002

Return Number of Specified Objects in a Swath

SWnentries
int32 SWnentries(int32 swathID, int32 entrycode, int32 *strbufsize)

swathID IN: Swath id returned by SWcreate or SWattach

entrycode IN: Entrycode

strbufsize OUT: String buffer size

Purpose Returns number of entries and descriptive string buffer size for a specified
entity.

Return value Number of entries if successful or FAIL (-1) otherwise. A typical reason
for failure is an improper swath id or entry code.

Description This routine can be called before an inquiry routines in order to determine
the sizes of the output arrays and descriptive strings. The string length
does not include the NULL terminator.

 The entry codes are:

 HDFE_NENTDIM (0) - Dimensions

 HDFE_NENTMAP (1) - Dimension Mappings

 HDFE_NENTIMAP (2) - Indexed Dimension Mappings

 HDFE_NENTGFLD (3) - Geolocation Fields

 HDFE_NENTDFLD (4) - Data Fields

Example In this example, we determine the number of dimension mapping entries
and the size of the map list string.

nmaps = SWnentries(swathID, HDFE_NENTMAP, &bufsz);

 The return value, nmaps, will be equal to 2 and bufsz = 39

FORTRAN integer*4 function swnentries(swathid, entrycode, bufsize)

 integer*4 swathid

 integer*4 entrycode

 integer*4 bufsize

 The equivalent FORTRAN code for the example above is:

parameter (HDFE_NENTMAP=1)

nmaps = swnentries(swathid, HDFE_NENTMAP, bufsz)

 2-86 170-TP-606-002

Open HDF-EOS File

SWopen
int32 SWopen(char *filename, intn access)

filename IN: Complete path and filename for the file to be opened

access IN: DFACC_READ, DFACC_RDWR or DFACC_CREATE

Purpose Opens or creates HDF file in order to create, read, or write a swath.

Return value Returns the swath file id handle (fid) if successful or FAIL (-1) otherwise.

Description This routine creates a new file or opens an existing one, depending on the
access parameter.

 Access codes:

 DFACC_READ Open for read only. If file does not exist, error

 DFACC_RDWR Open for read/write. If file does not exist, create it

 DFACC_CREATE If file exist, delete it, then open a new file for
 read/write

Example In this example, we create a new swath file named, SwathFile.hdf. It
returns the file handle, fid.

fid = SWopen("SwathFile.hdf", DFACC_CREATE);

FORTRAN integer*4 function swopen(filename, access)

 character*(*) filename

 integer access
 The access codes should be defined as parameters:

parameter (DFACC_READ=1)

parameter (DFACC_RDWR=3)

parameter (DFACC_CREATE=4)

 The equivalent FORTRAN code for the example above is:
fid = swopen("SwathFile.hdf", DFACC_CREATE)

Note to users of the SDP Toolkit: Please refer to the Release 6A.07 SDP Toolkit User Guide for
the ECS Project (333-CD-605-003), Section 6.2.1.2, for information on how to obtain a file
name (referred to as a “physical file handle”) from within a PGE. See also Section 9 of this
document for code examples.

 2-87 170-TP-606-002

Return Information About a Defined Time Period

SWperiodinfo
intn SWperiodinfo(int32 swathID, int32 periodID, char * fieldname, int32
 *ntype, int32 *rank, int32 dims[], int32 *size)

swathID IN: Swath id returned by SWcreate or SWattach

periodID IN: Period id returned by SWdeftimeperiod

fieldname IN: Field to subset

ntype OUT: Number type of field

rank OUT: Rank of field

dims OUT: Dimensions of subset period

size OUT: Size in bytes of subset period

Purpose Retrieves information about the subsetted period.

Return value Returns SUCCEED (0) if successful or FAIL (-1) otherwise.

Description This routine returns information about a subsetted time period for a
particular field. It is useful when allocating space for a data buffer for the
subset. Because of differences in number type and geolocation mapping, a
given time period will give different values for the dimensions and size for
various fields.

Example In this example, we retrieve information about the time period defined in
SWdeftimeperiodfor the Spectra field. We use this to allocate space for
data in the subsetted time period.

/* Get size in bytes of time period for "Spectra" field*/

status = SWperiodinfo(SWid, periodID, "Spectra", &ntype,

 &rank, dims, &size);

/* Allocate space */

datbuf = (float64 *) malloc(size);

FORTRAN integer function swperinfo(swathid, periodid, fieldname, ntype, rank,
dims, size)

 integer*4 swathid

 integer*4 periodid

 character*(*) fieldname

 integer*4 ntype

 2-88 170-TP-606-002

 integer*4 rank

 integer*4 dims(*)

 integer*4 size

 The equivalent FORTRAN code for the example above is:

status = swperinfo(swid, periodid, "Spectra", ntype, rank, dims, size)

 2-89 170-TP-606-002

Read Swath Attribute

SWreadattr
intn SWreadattr(int32 swathID, char *attrname, VOIDP datbuf)

swathID IN: Swath id returned by SWcreate or SWattach

attrname IN: Attribute name

datbuf OUT: Buffer allocated to hold attribute values

Purpose Reads attribute from a swath.

Return value Returns SUCCEED (0) if successful or FAIL (-1) otherwise. Typical
reasons for failure are an improper swath id or number type or incorrect
attribute name.

Description The attribute is passed by reference rather than value in order that a
single routine suffice for all numerical types.

Example In this example, we read a single precision (32 bit) floating point attribute
with the name "ScalarFloat":

status = SWreadattr(swathID, "ScalarFloat", &f32);

FORTRAN integer function swrdattr(swathid,attrname,datbuf)

 integer*4 swathid

 character*(*) attrname

 <valid type> datbuf(*)

 The equivalent FORTRAN code for the example above is:

parameter (DFNT_FLOAT32=5)

status = swrdattr(swathid, "ScalarFloat", f32)

 2-90 170-TP-606-002

Read Data From a Swath Field

SWreadfield
intn SWreadfield(int32 swathID, char *fieldname, int32 start[], int32 stride[], int32 edge[],

VOIDP buffer)

swathID IN: Swath id returned by SWcreate or SWattach

fieldname IN: Name of field to read

start IN: Array specifying the starting location within each dimension

stride IN: Array specifying the number of values to skip along each
 dimension

edge IN: Array specifying the number of values to read along each
 dimension

buffer OUT: Buffer to store the data read from the field

Purpose Reads data from a swath field.

Return value Returns SUCCEED (0) if successful or FAIL (-1) otherwise. Typical
reasons for failure are improper swath id or unknown fieldname.

Description The values within start, stride, and edge arrays refer to the swath field
(input) dimensions. The output data in buffer is written to contiguously.
The default values for start and stride are 0 and 1 respectively and are
used if these parameters are set to NULL. The default values for edge are
(dim - start) / stride where dim refers is the size of the dimension.

Example In this example, we read data from the 10th track (0-based) of the
Longitude field.

float32 track[1000];

int32 start[2]={10,1}, edge[2]={1,1000};

status = SWreadfield(swathID, "Longitude", start, NULL, edge,

track);

 2-91 170-TP-606-002

FORTRAN integer function

 swrdfld(swathid, fieldname, start, stride, edge,buffer)

 integer*4 swathid

 character*(*) fieldname

 integer*4 start(*)

 integer*4 stride(*)

 integer*4 edge(*)

 <valid type> buffer(*)

 The start, stride, and edge arrays must be defined explicitly, with the start
 array being 0-based.

 The equivalent FORTRAN code for the example above is:

real*4 track(1000)

integer*4 start(2), stride(2), edge(2)

start(1) = 0

start(2) = 10

stride(1) = 1

stride(2) = 1

edge(1) = 1000

edge(2) = 1

status = swrdfld(swathid, "Longitude", start, stride, edge,

 track)

 2-92 170-TP-606-002

Define a Longitude-Latitude Box Region for a Swath

SWregionindex
int32 SWregionindex(int32 swathID, float64 cornerlon[], float64 cornerlat[],

 int32 mode, char *geodim, int32 idxrange[])

swathID IN: Swath id returned by SWcreate or SWattach

cornerlon IN: Longitude in decimal degrees of box corners

cornerlat IN: Latitude in decimal degrees of box corners

mode IN: Cross Track inclusion mode

geodim OUT: Geolocation track dimension

idxrange OUT: The indices of the region in the geolocation track dimension.

Purpose Defines a longitude-latitude box region for a swath.

Return value Returns the swath region ID if successful or FAIL (-1) otherwise.

Description The difference between this routine and SWdefboxregion is the
geolocation track dimension name and the range of that dimension are
returned in addition to a regionID. Other than that difference they are the
same function and this function is used just like SWdefboxregion. This
routine defines a longitude-latitude box region for a swath. It returns a
swath region ID which is used by the SWextractregion routine to read all
the entries of a data field within the region. A cross track is within a
region if 1) its midpoint is within the longitude-latitude "box"
(HDFE_MIDPOINT), or 2) either of its endpoints is within the longitude-
latitude "box" (HDFE_ENDPOINT), or 3) any point of the cross track is
within the longitude-latitude "box" (HDFE_ANYPOINT), depending on
the inclusion mode designated by the user. All elements within an included
cross track are considered to be within the region even though a
particular element of the cross track might be outside the region. The
swath structure must have both Longitude and Latitude (or Colatitude)
fields defined

Example In this example, we define a region bounded by the 3 degrees longitude, 5
degrees latitude and 7 degrees longitude, 12 degrees latitude. We will
consider a cross track to be within the region if its midpoint is within the
region.

cornerlon[0] = 3.;

cornerlat[0] = 5.;

 2-93 170-TP-606-002

cornerlon[1] = 7.;

cornerlat[1] = 12.;

regionID = SWregionindex(swathID, cornerlon, cornerlat,

 HDFE_MIDPOINT, geodim, idxrange);

FORTRAN integer*4 function swregidx(swathid, cornerlon, cornerlat, mode, geodim,
idxrange)

 integer*4 swathid

 real*8 cornerlon

 real*8 cornerlat

 integer*4 mode

 character*(*) geodim

 integer*4 idxrange

 The equivalent FORTRAN code for the example above is:

parameter (HDFE_MIDPOINT=0)

cornerlon(1) = 3.

cornerlat(1) = 5.

cornerlon(2) = 7.

cornerlat(2) = 12.

regionid = swregidx(swathid, cornerlon, cornerlat,

 HDFE_MIDPOINT, geodim, idxrange)

 2-94 170-TP-606-002

Return Information About a Defined Region

SWregioninfo
intn SWregioninfo(int32 swathID, int32 regionID, char * fieldname, int32
 *ntype, int32 *rank, int32 dims[], int32 *size)

swathID IN: Swath id returned by SWcreate or SWattach

regionID IN: Region id returned by SWdefboxregion

fieldname IN: Field to subset

ntype OUT: Number type of field

rank OUT: Rank of field

dims OUT: Dimensions of subset region

size OUT: Size in bytes of subset region

Purpose Retrieves information about the subsetted region.

Return value Returns SUCCEED (0) if successful or FAIL (-1) otherwise.

Description This routine returns information about a subsetted region for a particular
field. It is useful when allocating space for a data buffer for the region.
Because of differences in number type and geolocation mapping, a given
region will give different values for the dimensions and size for various
fields.

Example In this example, we retrieve information about the region defined in
SWdefboxregion for the Spectra field. We use this to allocate space for
data in the subsetted region.

/* Get size in bytes of region for "Spectra" field*/

status = SWregioninfo(SWid, regionID, "Spectra", &ntype,

 &rank, dims, &size);

/* Allocate space */

datbuf = (float64 *) malloc(size);

 2-95 170-TP-606-002

FORTRAN integer function swreginfo(swathid, regionid, fieldname, ntype, rank,
dims, size)

 integer*4 swathid

 integer*4 regionid

 character*(*) fieldname

 integer*4 ntype

 integer*4 rank

 integer*4 dims(*)

 integer*4 size

 The equivalent FORTRAN code for the example above is:

status = swreginfo(swid, regionid, "Spectra", ntype, rank,

 dims, size)

 2-96 170-TP-606-002

Set Fill Value for a Specified Field

SWsetfillvalue
intn SWsetfillvalue(int32 swathID, char *fieldname, VOIDP fillvalue)

swathID IN: Swath id returned by SWcreate or SWattach

fieldname IN: Fieldname

fillvalue IN: Pointer to the fill value to be used

Purpose Sets fill value for the specified field.

Return value Returns SUCCEED (0) if successful or FAIL (-1) otherwise. Typical
reasons for failure are an improper swath id or number type.

Description The fill value is placed in all elements of the field which have not been
explicitly defined. The field must have 2 or more dimensions.

Example In this example, we set a fill value for the "Temperature" field:

tempfill = -999.0;

status = SWsetfillvalue(swathID, "Temperature", &tempfill);

FORTRAN integer function

 swsetfill(swathid,fieldname,fillvalue)

 integer*4 swathid

 character*(*) fieldname

 <valid type> fillvalue(*)

 The equivalent FORTRAN code for the example above is:

tempfill = -999.0;

status = swsetfill(swathid, "Temperature", -999.0)

 2-97 170-TP-606-002

Update map index for a specified region

SWupdateidxmap
int32 SWupdateidxmap(int32 swathID, int32 regionID, int32 indexin[], int32 indexout[], int32

indices[z])

swathID IN: Swath id returned by SWcreate or SWattach.

regionID IN: Region id returned by Swdefboxregion.

indexin IN: The array containing the indices of the data dimension to which
 each geolocation element corresponds.

indexout OUT: The array containing the indices of the data dimension to which
 each geolocation corresponds in the subsetted region. The
 indexout set to NULL, will not be returned.

indices OUT: The array containing the indices for start and stop of region.

Purpose Retrieve indexed array of specified geolocation mapping for a specified
region.

Return value Returns size of updated indexed array if successful or FAIL (-1) otherwise.
A typical reason for failure is the specified mapping does not exist.

Description This routine retrieves the size of the indexed array and the array of
indexed elements of the specified geolocation mapping for the specified
region.

Example In this example, we retrieve information about the indexed mapping
between the “IdxGeo” and “IdxData” dimensions, defined by
Swdefboxregion:

 /* Get size of index_region array */

 idxsz = SWupdateidxmap(swathID, regionID, index, NULL, indices);

 /* Allocate memory for index_region */

 index_region = (int32*)malloc(sizeof(int32) * idxsz);

 /* Get the array index_region */

 idxsz = Swupdateidxmap(swathID, regionID, index, index_region,
indices);

FORTRAN integer*4 function swupimap(swathid, regionid, indexin, indexout)

 integer*4 swathid

 integer*4 regionid

 2-98 170-TP-606-002

 integer*4 indexin(*)

 integer*4 indexout(*)

 integer*4 indices(2)

The equivalent FORTRAN code for the example above is: status =
swupdateidxmap(swathid, regionid, index, index_region, indices)

 Note: The indexed arrays should be 0-based.

 2-99 170-TP-606-002

Write/Update Swath Attribute

SWwriteattr
intn SWwriteattr(int32 swathID, char *attrname, int32 ntype, int32 count, VOIDP datbuf)

swathID IN: Swath id returned by SWcreate or SWattach

attrname IN: Attribute name

ntype IN: Number type of attribute

count IN: Number of values to store in attribute

datbuf IN: Attribute values

Purpose Writes/Updates attribute in a swath.

Return value Returns SUCCEED (0) if successful or FAIL (-1) otherwise. Typical
reasons for failure are an improper swath id or number type.

Description If the attribute does not exist, it is created. If it does exist, then the value(s)
is (are) updated. The attribute is passed by reference rather than value in
order that a single routine suffice for all numerical types. Because of this
a literal numerical expression should not be used in the call.

Example In this example, we write a single precision (32 bit) floating point number
with the name "ScalarFloat" and the value 3.14:

f32 = 3.14;

status = SWwriteattr(swathid, "ScalarFloat", DFNT_FLOAT32,

 1, &f32);

 We can update this value by simply calling the routine again with the new
value:

f32 = 3.14159;

status = SWwriteattr(swathid, "ScalarFloat", DFNT_FLOAT32,

 1, &f32);

 2-100 170-TP-606-002

FORTRAN integer function swwrattr(swathid, attrname, ntype, count, datbuf)

 integer*4 swathid

 character*(*) attrname

 integer*4 ntype

 integer*4 count

 <valid type> datbuf(*)

 The equivalent FORTRAN code for the first example above is:

parameter (DFNT_FLOAT32=5)

f32 = 3.14

status = swwrattr(swathid, "ScalarFloat", DFNT_FLOAT32, 1, f32)

 2-101 170-TP-606-002

Write Field Metadata for an Existing Swath Data Field

SWwritedatameta
intn SWwritedatameta(int32 swathID, char *fieldname, char *dimlist, int32 numbertype)

swathID IN: Swath id returned by SWcreate or SWattach

fieldname IN: Name of field

dimlist IN: The list of data dimensions defining the field

numbertype IN: The number type of the data stored in the field

Purpose Writes field metadata for an existing swath data field.

Return value Returns SUCCEED (0) if successful or FAIL (-1) otherwise. Typical
reason for failure is unknown dimension in the dimension list.

Description This routine writes field metadata for an existing data field. This is useful
when the data field was defined without using the swath API. Note that
any entries in the dimension list must be defined through the SWdefdim
routine before this routine is called.

Example In this example we write the metadata for the “Band_1” data field used in
the swath.

status = SWwritedatameta(swathID, "Band_1", "GeoTrack,

 GeoXtrack", DFNT_FLOAT32);

FORTRAN integer function

 swwrdmeta(swathid,fieldname,dimlist,numbertype)

 integer*4 swathid

 character*(*) fieldname

 character*(*) dimlist

 integer*4 numbertype

 The equivalent FORTRAN code for the example above is:

status = swwrdmeta(swathID, "Band_1", "GeoXtrack, GeoTrack",

 DFNT_FLOAT32)

 The dimensions are entered in FORTRAN order with the first dimension
being incremented first.

 2-102 170-TP-606-002

Write Data to a Swath Field

SWwritefield
intn SWwritefield(int32 swathID, char *fieldname, int32 start[], int32 stride[], int32 edge[],

VOIDP data)

swathID IN: Swath id returned by SWcreate or SWattach

fieldname IN: Name of field to write

start IN: Array specifying the starting location within each
 dimension (0-based)

stride IN: Array specifying the number of values to skip along each
 dimension

edge IN: Array specifying the number of values to write along each
 dimension

data IN: Values to be written to the field

Purpose Writes data to a swath field.

Return value Returns SUCCEED (0) if successful or FAIL (-1) otherwise. Typical
reasons for failure are an improper swath id or unknown fieldname.

Description The values within start, stride, and edge arrays refer to the swath field
(output) dimensions. The input data in the data buffer is read from
contiguously. The default values for start and stride are 0 and 1
respectively and are used if these parameters are set to NULL. The
default values for edge are (dim - start) / stride where dim refers is the
size of the dimension. It is the users responsibility to make sure the data
buffer contains sufficient entries to write to the field. Note that the data
buffer for a compressed field must be the size of the entire field as
incremental writes are not supported by the underlying HDF routines.

Example In this example, we write data to the Longitude field.

float32 longitude [2000][1000];

/* Define elements of longitude array */

status = SWwritefield(swathID, "Longitude", NULL, NULL, NULL,

longitude);

 2-103 170-TP-606-002

 We now update Track 10 (0 - based) in this field:

float32 newtrack[1000];

int32 start[2]={10,0}, edge[2]={1,1000};

/* Define elements of newtrack array */

status = SWwritefield(swathID, "Longitude", start, NULL,

 edge, newtrack);

FORTRAN integer function

 swwrfld(swathid,fieldname,start,stride,edge,data)

 integer*4 swathid

 character*(*) fieldname

 integer*4 start(*)

 integer*4 stride(*)

 integer*4 edge(*)

 <valid type> data(*)

 The start, stride, and edge arrays must be defined explicitly, with the start
array being 0-based.

 The equivalent FORTRAN code for the example above is:

real*4 longitude(1000,2000)

integer*4 start(2), stride(2), edge(2)

start(1) = 0

start(2) = 10

stride(1) = 1

stride(2) = 1

edge(1) = 1000

edge(2) = 2000

status = swwrfld(swathid, "Longitude", start, stride, edge,

longitude)

 We now update Track 10 (0 - based) in this field:

real*4 newtrack(1000)

integer*4 start(2), stride(2), edge(2)

start(1) = 10

 2-104 170-TP-606-002

start(2) = 0

stride(1) = 1

stride(2) = 1

edge(1) = 1000

edge(2) = 1

status = swwrfld(swathid, "Longitude", start, stride, edge,

newtrack)

 2-105 170-TP-606-002

Write Field Metadata to an Existing Swath Geolocation
Field

SWwritegeometa
intn SWwritegeometa(int32 swathID, char *fieldname, char *dimlist, int32 numbertype)

swathID IN: Swath id returned by SWcreate or SWattach

fieldname IN: Name of field

dimlist IN: The list of geolocation dimensions defining the field

numbertype IN: The number type of the data stored in the field

Purpose Writes field metadata for an existing swath geolocation field.

Return value Returns SUCCEED (0) if successful or FAIL (-1) otherwise. Typical
reason for failure is unknown dimension in the dimension list.

Description This routine writes field metadata for an existing geolocation field. This is
useful when the data field was defined without using the swath API. Note
that any entries in the dimension list must be defined through the
SWdefdim routine before this routine is called.

Example In this example we write the metadata for the “Latitude” geolocation field
used in the swath.

status = SWwritegeometa(swathID, "Latitude",

 "GeoTrack,GeoXtrack",DFNT_FLOAT32);

FORTRAN integer function

 swwrgmeta(swathid,fieldname,dimlist,numbertype)

 integer*4 swathid

 character*(*) fieldname

 character*(*) dimlist

 integer*4 numbertype

 The equivalent FORTRAN code for the example above is:

status = swwrgmeta(swathID, "Latitude",

 "GeoXtrack,GeoTrack",DFNT_FLOAT32)

 The dimensions are entered in FORTRAN order with the first dimension
being incremented first.

 2-106 170-TP-606-002

2.1.3 Grid Interface Functions
This section contains an alphabetical listing of all the functions in the Grid interface. The
functions are alphabetized based on their C-language names.

 2-107 170-TP-606-002

Attach to an Existing Grid Structure

GDattach
int32 GDattach(int32 fid, char *gridname)

fid IN: Grid file id returned by GDopen

gridname IN: Name of grid to be attached

Purpose Attaches to an existing grid within the file.

Return value Returns the grid handle(gridID) if successful or FAIL(-1) otherwise.
Typical reasons for failure are improper grid file id or grid name.

Description This routine attaches to the grid using the gridname parameter as the
identifier.

Example In this example, we attach to the previously created grid, "ExampleGrid",
within the HDF file, GridFile.hdf, referred to by the handle, fid:

gridID = GDattach(fid, "ExampleGrid");

 The grid can then be referenced by subsequent routines using the handle,
gridID.

FORTRAN integer*4 function gdattach(fid, gridname)

 integer*4 fid

 character*(*) gridname

 The equivalent FORTRAN code for the example above is:

gridid = gdattach(fid, "ExampleGrid")

 2-108 170-TP-606-002

Return Information About a Grid Attribute

GDattrinfo
intn GDattrinfo(int32 gridID, char *attrname, int32 * numbertype, int32 *count)

gridID IN: Grid id returned by GDcreate or GDattach

attrname IN: Attribute name

numbertype OUT: Number type of attribute

count OUT: Number of total bytes in attribute

Purpose Returns information about a grid attribute

Return value Returns SUCCEED (0) if successful or FAIL (-1) otherwise.

Description This routine returns number type and number of elements (count) of a grid
attribute.

Example In this example, we return information about the ScalarFloat attribute.

status = GDattrinfo(pointID, "ScalarFloat",&nt,&count);

 The nt variable will have the value 5 and count will have the value 4.

FORTRAN integer function gdattrinfo(gridid, attrname, ntype, count,)

 integer*4 gridid

 character*(*) attrname

 integer*4 ntype

 integer*4 count

 The equivalent FORTRAN code for the first example above is:

status = gdattrinfo(pointid, "ScalarFloat",nt,count)

 2-109 170-TP-606-002

Write Block SOM Offset

GDblkSOMoffset
intn GDblkSOMoffset(int32 gridID, int32 offset[], int32 count, char *code)

gridID IN: Grid id returned by GDcreate or GDattach

offset IN: Offset values for SOM Projection data

count IN: Number of offset values to write

code IN: Write/Read code

Purpose Write block SOM offset values.

Return value Returns SUCCEED(0) if successful or FAIL(-1) otherwise.

Description The routine supports structures that contain data which has been written
in the Solar Oblique Mercator (SOM) projection. The structure can
contain one to many blocks, each with corner points defined by latitude
and longitude. The routine can only be used by grids that use the SOM
projection. The routine writes the offset values, in pixels, from a standard
SOM projection. Their is an offset value for every block in the grid except
for the first block. The count parameter is used as a check for the number
of offset values. This routine will also return the offset values, but the
user must know how large the offset array needs to be before calling the
function, in that case the code value would be “r” and the count
parameter has to be provided also.

Example In this example, we first show how the SOM projection is defined using
GDdefproj, then we show how the SOM projection is modified using
GDblkSOMoffset:

 The first parameter is the Grid id, the second is the projection code for the
SOM projection, the third is the zone code, not needed for the SOM
projection, the fourth is the sphere code, not needed for the SOM
projection and the last parameter is the projection parameter array. Each
projection supported by the Grid interface has a unique set of variables
that are used by the GCTP library and they are passed to the GCTP
library through this array. As you can see below, the twelfth parameter is
set to a non-zero value, it is set to the size of the number of blocks in the
data field. This is required if the function GDblkSOMoffset is going to be
called. The GCTP library doesn’t use the this parameter for the SOM
projection so that is used by the HDF-EOS library only. The
GDblkSOMoffset function checks that parameter first before anything else
is done.

 2-110 170-TP-606-002

 projparm[0] = 6378137.0;

 projparm[1] = 0.006694348;

 projparm[3] = EHconvAng(98.161, HDFE_DEG_DMS);

 projparm[4] = EHconvAng(87.11516945924, HDFE_DEG_DMS);

 projparm[8] = 0.068585416 * 1440;

 projparm[9] = 0.0;

 projparm[11] = 6;

 status = GDdefproj(GDid_som, GCTP_SOM, NULL, NULL, projparm);

 Now that the projection has been defined, GDblkSOMoffset can be called:

 offset[5] = {5, 10, 12, 8, 2};

 count = 5;

 code = “w”;

status = GDblkSOMoffset(gridID, offset, count, code);

 This set the offset for the second block to 5 pixels, the third block to 10
pixels, fourth block to 12 pixels, fifth to 8 pixels and the sixth block to 2
pixels.

NOTE: This routine is currently implemented in “C” only. If the need arises, a
FORTRAN function will be added.

 Interblock subsetting is not currently supported by the ECS Science Data
Server, at this time. That is, a response to a request to return data
contained within a specified latitude/longitude box, will be in an integral
number of blocks.

Related Documents

An Album of Map Projections, USGS Professional Paper 1453, Snyder and Voxland,
1989

Map Projections - A Working Manual, USGS Professional Paper 1395, Snyder, 1987

 2-111 170-TP-606-002

Close an HDF-EOS File

GDclose
intn GDclose(int32 fid)

fid IN: Grid file id returned by GDopen

Purpose Closes file.

Return value Returns SUCCEED(0) if successful or FAIL(-1) otherwise.

Description This routine closes the HDF grid file.

Example

status = GDclose(fid);

FORTRAN integer function gdclose(int32 fid)

 integer*4 fid

 The equivalent FORTRAN code for the example above is:

status = gdclose(fid)

 2-112 170-TP-606-002

Retreive Compression Information for Field

GDcompinfo
intn GDcompinfo(int32 gridID, char *fieldname, int32 *compcode, intn compparm[])

gridID IN: Grid id returned by GDcreate or GDattach

fieldname IN: Fieldname

compcode OUT: HDF compression code

compparm OUT: Compression parameters

Purpose Retrieves compression information about a field.

Return value Returns SUCCEED(0) if successful or FAIL(-1) otherwise.

Description This routine returns the compression code and compression parameters
for a given field.

Example To retreive the compression information about the Opacity field defined in
the GDdefcomp section:

status = GDcompinfo(gridID, “Opacity”, compcode, compparm);

The compcode parameter will be set to 4 and compparm[0] to 5.

FORTRAN integer function gdcompinfo(gridid,fieldname compcode, compparm)

 integer*4 gridid

character*(*) fieldname

 integer*4 compcode

integer compparm

 The equivalent FORTRAN code for the example above is:

status = gdcompinfo(gridid, ‘Opacity’, compcode, compparm)

The compcode parameter will be set to 4 and compparm(1) to 5.

 2-113 170-TP-606-002

Create a New Grid Structure

GDcreate
int32 GDcreate(int32 fid, char *gridname, int32 xdimsize, int32 ydimsize, float64 upleftpt[],

float64 lowrightpt[])

fid IN: Grid file id returned by GDopen

gridname IN: Name of grid to be created

xdimsize IN: Number of columns in grid

ydimsize IN: Number of rows in grid

upleftpt IN: Location, of upper left corner of the upper left pixel

lowrightpt IN: Location, of lower right corner of the lower right pixel

Purpose Creates a grid within the file.

Return value Returns the grid handle(gridID) or FAIL(-1) otherwise.

Description The grid is created as a Vgroup within the HDF file with the name
gridname and class GRID. This routine establishes the resolution of the
grid, ie, the number of rows and columns, and it's location within the
complete global projection through the upleftpt and lowrightpt arrays.
These arrays should be in meters for all GCTP projections other than the
Geographic Projection and EASE grid, which should be in packed degree
format. q.v. below.

Example In this example, we create a UTM grid bounded by 54 E to 60 E longitude
and 20 N to 30 N latitude. We divide it into 120 bins along the x-axis and
200 bins along the y-axis

uplft[0]=210584.50041;

uplft[1]=3322395.95445;

lowrgt[0]=813931.10959;

lowrgt[1]=2214162.53278;

xdim=120;

ydim=200;

gridID = GDcreate(fid, "UTMGrid", xdim, ydim, uplft, lowrgt);

 The grid structure is then referenced by subsequent routines using the
handle, gridID.

 2-114 170-TP-606-002

 The xdim and ydim values are referenced in the field definition routines
by the reserved dimensions: XDim and YDim.

 For the Polar Stereographic, Goode Homolosine and Lambert Azimuthal
projections, we have established default values in the case of an entire
hemisphere for the first projection, the entire globe for the second and the
entire polar or equitorial projection for the third. Thus, if we have a Polar
Stereographic projection of the Northern Hemisphere then the uplft and
lowrgt arrays can be replaced by NULL in the function call.

 In the case of the Geographic projection (linear scale in both longitude
latitude), and EASE grid (i.e., BCEA projection) the upleftpt and
lowrightpt arrays contain the longitude and latitude of these points in
packed degree format (DDDMMMSSS.SS).

 Note:

upleftpt - Array that contains the X-Y coordinates of the upper left corner of the upper
left pixel of the grid. First and second elements of the array contain the X
and Y coordinates respectively. The upper left X coordinate value should
be the lowest X value of the grid. The upper left Y coordinate value should
be the highest Y value of the grid.

 lowrightpt - Array that contains the X-Y corrdinates of the lower right
corner of the lower right pixel of the grid. First and second elements of
the array contain the X and Y coordinates respectively. The lower right X
coordinate value should be the highest X value of the grid. The lower right
Y coordinate value should be the lowest Y value of the grid.

 If the projection id geographic (i.e., projcode=0) or Behrmann
Cylindrical equal Area (i.e., projcode = GCTP_BCEA = 98) then the X-Y
coordinates should be specified in degrees/minutes/seconds
(DDDMMMSSS.SS) format. The first element of the array holds the
longitude and the second element holds the latitude. For geographic
latitudes are from -90 to +90 and longitudes are from -180 to +180 (west
is negative). For EASE grid latitudes are from –86.72 to +86.72 and
longitudes are from –180 to +180.

 For all other projection types the X-Y coordinates should be in meters in
double precision. These coordinates have to be computed using the GCTP
software with the same projection parameters that have been specified in
the projparm array. For UTM projections use the same zone code and its
sign (positive or negative) while computing both upper left and lower
right corner X-Y coordinates irrespective of the hemisphere.

 To convert lat/long to x-y coordinates, it is also possible to use SDP
Toolkit routines: PGS_GCT_Init() or PGS_GCT_Proj(). More
information is contained in the SDP Toolkit Users Guide for the ECS
Project

 2-115 170-TP-606-002

FORTRAN integer*4 function gdcreate(fid, gridname, xdimsize, ydimsize, upleftpt,
lowrightpt)

 integer*4 fid

 character*(*) gridname

 integer*4 xdimsize

 interger*4 ydimsize

 real*8 upleftpt

 real*8 lowrightpt

 The equivalent FORTRAN code for the example above is:

gridid = gdcreate(fid, "UTMGrid", xdim, ydim, uplft,

 lowrgt)
 The default values for the Polar Stereographic and Goode Homolosine

can be designated by setting all elements in the uplft and lowrgt arrays
to 0.

 2-116 170-TP-606-002

Define Region of Interest by Latitude/Longitude

GDdefboxregion
int32 GDdefboxregion(int32 gridID, float64 cornerlon[], float64 cornerlat[])

gridID IN: Grid id returned by GDcreate or GDattach

cornerlon IN: Longitude in decimal degrees of box corners

cornerlat IN: Latitude in decimal degrees of box corners

Purpose Defines a longitude-latitude box region for a grid.

Return value Returns the grid region ID if successful or FAIL (-1) otherwise.

Description This routine defines a longitude-latitude box region for a grid. It returns a
grid region ID which is used by the GDextractregion routine to read all
the entries of a data field within the region.

Example In this example, we define the region to be the first quadrant of the
Northern hemisphere.

cornerlon[0] = 0.;

cornerlat[0] = 90.;

cornerlon[1] = 90.;

cornerlat[1] = 0.;

regionID = GDdefboxregion(GDid, cornerlon, cornerlat);

FORTRAN integer*4 function gddefboxreg(gridid, cornerlon, cornerlat)

 integer*4 gridid

 real*8 cornerlon

 real*8 cornerlat

 The equivalent FORTRAN code for the example above is:

cornerlon(1) = 0.

cornerlat(1) = 90.

cornerlon(2) = 90.

cornerlat(2) = 0.

regionid = gddefboxreg(gridid, cornerlon,cornerlat)

 2-117 170-TP-606-002

Set Grid Field Compression

GDdefcomp
intn GDdefcomp(int32 gridID, int32 compcode, intn compparm[])

gridID IN: Grid id returned by GDcreate or GDattach

compcode IN: HDF compression code

compparm IN: Compression parameters (if applicable)

Purpose Sets the field compression for all subsequent field definitions.

Return value Returns SUCCEED(0) if successful or FAIL(-1) otherwise.

Description This routine sets the HDF field compression for subsequent grid field
definitions. The compression does not apply to one-dimensional fields.
The compression schemes currently supported are: run length encoding
(HDFE_COMP_RLE = 1) , skipping Huffman (HDFE_COMP_SKPHUFF
= 3), deflate (gzip) (HDFE_COMP_DEFLATE=4) and no compression
(HDFE_COMP_NONE = 0, the default). Deflate compression requires a
single integer compression parameter in the range of one to nine with
higher values corresponding to greater compression. Compressed fields
are written using the standard GDwritefield routine, however, the entire
field must be written in a single call. If this is not possible, the user should
consider tiling. See GDdeftile for further information. Any portion of a
compressed field can then be accessed with the GDreadfield routine.
Compression takes precedence over merging so that multi-dimensional
fields that are compressed are not merged. The user should refer to the
HDF Reference Manual for a fuller explanation of the compression
schemes and parameters.

Example Suppose we wish to compress the Pressure using run length encoding, the
Opacity field using deflate compression, the Spectra field with skipping
Huffman compression, and use no compression for the Temperature field.

status = GDdefcomp(gridID, HDFE_COMP_RLE, NULL);

status = GDdeffield(gridID, "Pressure", "YDim,XDim",

DFNT_FLOAT32, HDFE_NOMERGE);

compparm[0] = 5;

status = GDdefcomp(gridID, HDFE_COMP_DEFLATE, compparm);

status = GDdeffield(gridID, "Opacity", "YDim,XDim",

DFNT_FLOAT32, HDFE_NOMERGE);

status = GDdefcomp(gridID, HDFE_COMP_SKPHUFF, NULL);

 2-118 170-TP-606-002

status = GDdeffield(gridID, "Spectra", "Bands,YDim,XDim",

DFNT_FLOAT32, HDFE_NOMERGE);

status = GDdefcomp(gridID, HDFE_COMP_NONE, NULL);

status = GDdeffield(gridID, "Temperature", "YDim,XDim",

DFNT_FLOAT32, HDFE_AUTOMERGE);

Note that the HDFE_AUTOMERGE parameter will be ignored in the Temperature field
definition.

FORTRAN integer function gddefcomp(gridid, compcode, compparm)

 integer*4 gridid

 integer compcode

integer compparm

 The equivalent FORTRAN code for the example above is:
parameter (HDFE_COMP_NONE=0)

parameter (HDFE_COMP_RLE=1)

parameter (HDFE_COMP_SKPHUFF=3)

parameter (HDFE_COMP_DEFLATE=4)

integer compparm(5)

status = gddefcomp(gridid, HDFE_COMP_RLE, compparm)

status = gddeffld(gridid, "Pressure", "YDim,XDim",
DFNT_FLOAT32, HDFE_NOMERGE)

compparm(1) = 5

status = gddefcomp(gridid, HDFE_COMP_DEFLATE, compparm)

status = gdeffld(gridid, "Opacity", "YDim,XDim", DFNT_FLOAT32,
HDFE_NOMERGE)

status = gddefcomp(gridid, HDFE_COMP_SKPHUFF, compparm)

status = gddeffld(gridid, "Spectra", "Bands,YDim,XDim",
DFNT_FLOAT32, HDFE_NOMERGE)

status = gddefcomp(gridid, HDFE_COMP_NONE, compparm)

status = gddeffld(gridid, "Temperature", "YDim,XDim",

DFNT_FLOAT32, HDFE_AUTOMERGE)

 2-119 170-TP-606-002

Define a New Dimension Within a Grid

GDdefdim
intn GDdefdim(int32 gridID, char *dimname, int32 dim)

gridID IN: Grid id returned by GDcreate or GDattach

dimname IN: Name of dimension to be defined

dim IN: The size of the dimension

Purpose Defines a new dimension within the grid.

Return value Returns SUCCEED(0) if successful or FAIL(-1) otherwise. Typical reason
for failure is an improper grid id.

Description This routine defines dimensions that are used by the field definition
routines (described subsequently) to establish the size of the field.

Example In this example, we define a dimension, Band, with size 15.

status = GDdefdim(gridID, "Band", 15)

 To specify an unlimited dimension which can be used to define an
appendable array, the dimension value should be set to zero or
equivalently, SD_UNLIMITED:

status = GDdefdim(gridID, "Unlim", SD_UNLIMITED);

FORTRAN integer function gddefdim(gridid, fieldname, dim)

 integer*4 gridid

 character*(*) fieldname

 integer*4 dim

 The equivalent FORTRAN code for the example above is:

parameter (SD_UNLIMITED=0)

status = gddefdim(gridid, "Band", 15)

status = gddefdim(gridid, "Unlim", SD_UNLIMITED)

 2-120 170-TP-606-002

Define a New Data Field Within a Grid

GDdeffield
intn GDdeffield(int32 gridID, char *fieldname, char *dimlist, int32 numbertype, int32 merge)

gridID IN: Grid id returned by GDcreate or GDattach

fieldname IN: Name of field to be defined

dimlist IN: The list of data dimensions defining the field

numbertype IN: The number type of the data stored in the field

merge IN: Merge code (HDFE-NOMERGE (0) - no merge,
 HDFE_AUTOMERGE (1) -merge)

Purpose Defines a new data field within the grid.

Return value Returns SUCCEED(0) if successful or FAIL(-1) otherwise. Typical reason
for failure is an unknown dimension in the dimension list.

Description This routine defines data fields to be stored in the grid. The dimensions
are entered as a string consisting of geolocation dimensions separated by
commas. They are entered in C order, that is, the last dimension is
incremented first. The API will attempt to merge into a single object those
fields that share dimensions and in case of multidimensional fields,
numbertype. Two and three dimensional fields will be merged into a single
three-dimensional object if the last two dimensions (in C order are equal).
If the merge code for a field is set to 0, the API will not attempt to merge it
with other fields. Fields using the unlimited dimension will not be merged.
Because merging breaks the one-to-one correspondence between HDF-
EOS fields and HDF SDS arrays, it should not be set if the user wishes to
access the HDF-EOS field directly using HDF routines or, for example, to
create an HDF attribute corresponding to the field.

Example In this example, we define a grid field, Temperature with dimensions
XDim and YDim (as established by the GDcreate routine) containing 4-
byte floating point numbers and a field, Spectra, with dimensions XDim,
YDim, and Bands:

status = GDdeffield(gridID, "Temperature", "YDim,XDim",

DFNT_FLOAT32, HDFE_AUTOMERGE);

status = GDdeffield(gridID, "Spectra", "Bands,YDim,XDim",

DFNT_FLOAT32, HDFE_NOMERGE);

 2-121 170-TP-606-002

FORTRAN integer function gddeffld(gridid, fieldname, dimlist, numbertype, merge)

 integer*4 gridid

 character*(*) fieldname

 character*(*) dimlist

 integer*4 numbertype

 integer*4 merge

 The equivalent FORTRAN code for the example above is:

parameter (DFNT_FLOAT32=5)

parameter (HDFE_NOMERGE=0)

parameter (HDFE_AUTOMERGE=1)

status = gddeffld(gridid, "Temperature", "XDim,YDim",

DFNT_FLOAT32, DFE_AUTOMERGE)

status = gddeffld(gridid, "Spectra", "XDim,YDim,Bands",

DFNT_FLOAT32, HDFE_NOMERGE)

 The dimensions are entered in FORTRAN order with the first dimension
incremented first.

 2-122 170-TP-606-002

Define the Origin of the Grid Data

GDdeforigin
intn GDdeforigin(int32 gridID, int32 origincode)

gridID IN: Grid id returned by GDcreate or GDattach

origincode IN: Location of the origin of the grid data

Purpose Defines the origin of the grid data

Return Value Returns SUCCEED(0) if successful or FAIL(-1) otherwise

Description The routine is used to define the origin of the grid data. This allows the
user to select any corner of the grid as the origin.

 Origin Codes:

 HDFE_GD_UL(Default)(0) Upper Left corner of grid

 HDFE_GD_UR(1) Upper Right corner of grid

 HDFE_GD_LL(2) Lower Left corner of grid

 HDFE_GD_LR(3) Lower Right corner of grid

Example In this example we define the origin of the grid to be the Lower Right
corner:

status = GDdeforigin(gridID, HDFE_GD_LR);

FORTRAN integer function gddeforg(gridid, origincode)

 integer*4 gridid

 integer*4 origincode

 The equivalent FORTRAN code for the above example is :

parameter (HDFE_GD_LR=3)

status = gddeforg(gridid, HDFE_GD_LR)

 2-123 170-TP-606-002

Define a Pixel Registration Within a Grid

GDdefpixreg
intn GDdefpixreg(int32 gridID, int32 pixreg)

gridID IN: Grid id returned by GDcreate or GDattach

pixreg IN: Pixel registration

Purpose Defines pixel registration within grid cell

Return Value Returns SUCCEED(0) if successful or FAIL(-1) otherwise.

Description This routine is used to define whether the pixel center or pixel corner (as
defined by the GDdeforigin routine) is used when requesting the location
(longitude and latitude) of a given pixel.

 Registration Codes:

 HDFE_CENTER (0) (Default) Center of pixel cell

 HDFE_CORNER (1) Corner of a pixel cell

Example In this example, we define the pixel registration to be the corner of the
pixel cell:

status = GDdefpixreg(gridID, HDFE_CORNER);

FORTRAN integer function gddefpixreg(gridid, pixreg)

 integer*4 gridid

 integer*4 pixreg

 The equivalent FORTRAN code for the example above is:

parameter (HDFE_CORNER=1)

status = gddefpixreg(gridid, HDFE_CORNER)

 2-124 170-TP-606-002

Define Grid Projection

GDdefproj
intn GDdefproj(int32 gridID, int32 projcode, int32 zonecode, int32 spherecode, float64

projparm[])

gridID IN: Grid id returned by GDcreate or GDattach

projcode IN: GCTP projection code

zonecode IN: GCTP zone code used by UTM projection

spherecode IN: GCTP spheroid code

projparm IN: GCTP projection parameter array

Purpose Defines projection of grid

Return Value Returns SUCCEED(0) if successful or FAIL(-1) otherwise

Description Defines the GCTP projection and projection parameters of the grid.

Example In this example, we define a Universal Transverse Mercator (UTM) grid
bounded by 54 E - 60 E longitude and 20 N - 30 N latitude – UTM
zonecode 40, using default spheroid (Clarke 1866), spherecode = 0

spherecode = 0;

zonecode = 40;

status = GDdefproj(gridID, GCTP_UTM, zonecode, spherecode,

 NULL);

 In this next example we define a Polar Stereographic projection of the
Northern Hemisphere (True scale at 90 N, 0 Longitude below pole) using
the International 1967 spheriod.

spherecode = 3;

for (i = 0; i < 13; i++) projparm[i] = 0;

/* Set Long below pole & true scale in DDDMMMSSS.SSS form */

projparm[5] = 90000000.00;

status = GDdefproj(gridID, GCTP_PS, NULL, spherecode,

 projparm);

 Finally we define a Geographic projection. In this case neither the zone
code, sphere code or the projection parameters are used.

status = GDdefproj(gridID, GCTP_GEO, NULL, NULL, NULL)

 2-125 170-TP-606-002

FORTRAN integer function gddefproj(gridid, projcode, zonecode, spherecode,
projparm)

 integer*4 gridid

 integer*4 projcode

 integer*4 zonecode

 integer*4 spherecode

 real*8 projparm(*)

 The equivalent FORTRAN code for the examples above is:

parameter (GCTP_UTM=1)

spherecode = 0

zonecode = 40

status = gddefproj(gridid, GCTP_UTM, zonecode, spherecode,

 dummy)

parameter (GCTP_PS=6)

spherecode = 6

do i=1,13

 projparm(i) = 0

enddo

projparm(6) = 90000000.00

status = gddefproj(gridid, GCTP_PS, dummy, spherecode,

 projparm)

parameter (GCTP_GEO=0)

status = gddefproj(gridid, GCTP_GEO, dummy, dummy, dummy)

Note: projcode, zonecode, spherecode and projection parameter information are
listed in Section 1.6, GCTP Usage.

 2-126 170-TP-606-002

Define Tiling Parameters

GDdeftile
intn GDdeftile(int32 gridID, int32 tilecode, int32 tilerank, int32 tiledims[])

gridID IN: Grid id returned by GDcreate or GDattach

tilecode IN: Tile code: HDF_TILE, HDF_NOTILE (default)

tilerank IN: The number of tile dimensions

tiledims IN: Tile dimensions

Purpose Defines tiling dimensions for subsequent field definitions

Return Value Returns SUCCEED(0) if successful or FAIL(-1) otherwise

Description This routine defines the tiling dimensions for fields defined following this
function call, analogous to the procedure for setting the field compression
scheme using GDdefcomp. The number of tile dimensions and subsequent
field dimensions must be the same and the tile dimensions must be integral
divisors of the corresponding field dimensions. A tile dimension set to 0
will be equivalent to 1.

Example We will define four fields in a grid, two two-dimensional fields of the same
size with the same tiling, a three-dimensional field with a different tiling
scheme, and a fourth with no tiling. We assume that XDim is 200 and
YDim is 300.

tiledims[0] = 100;

tiledims[1] = 200;

status = GDdeftile(gridID, HDFE_TILE, 2, tiledims);

status = GDdeffield(gridID, "Pressure", "YDim,XDim",

DFNT_INT16, HDFE_NOMERGE);

status = GDdeffield(gridID, "Temperature", "YDim,XDim",

DFNT_FLOAT32, HDFE_NOMERGE);

tiledims[0] = 1;

tiledims[1] = 150;

tiledims[2] = 100;

status = GDdeftile(gridID, HDFE_TILE, 3, tiledims);

status = GDdeffield(gridID, "Spectra", "Bands,YDim,XDim",

DFNT_FLOAT32, HDFE_NOMERGE);

 2-127 170-TP-606-002

status = GDdeftile(gridID, HDFE_NOTILE, 0, NULL);

status = GDdeffield(gridID, "Communities", "YDim,XDim",

DFNT_INT32, HDFE_AUTOMERGE);

FORTRAN integer function gddeftle(gridid, tilecode,tilerank,tiledims)

 integer*4 gridid

 integer*4 tilecode

integer*4 tilerank

integer*4 tiledims(*)

 The equivalent FORTRAN code for the example above is:

parameter (HDFE_NOTILE=0)

parameter (HDFE_TILE=1)

tiledims(1) = 200

tiledims(2) = 100

status = gddeftle(gridid, HDFE_TILE, 2, tiledims)

status = gddeffld(gridid, ‘Pressure’, ‘XDim,YDim’, DFNT_INT16,

HDFE_NOMERGE)

status = gddefld(gridid, ‘Temperature’, ‘XDim,YDim’,

DFNT_FLOAT32, HDFE_NOMERGE)

tiledims[1] = 100

tiledims[2] = 150

tiledims[3] = 1

status = gddeftle(gridid, HDFE_TILE, 3, tiledims)

status = gddeffld(gridid, ‘Spectra’, ‘XDim,YDim,Bands’,

DFNT_FLOAT32, HDFE_NOMERGE)

status = gddeftle(gridid, HDFE_NOTILE, 0, tiledims);

status = gddeffld(gridid, ‘Communities’, ‘XDim,YDim’,

DFNT_INT32, HDFE_AUTOMERGE)

 2-128 170-TP-606-002

Define a Time Period of Interest

GDdeftimeperiod
int32 GDdeftimeperiod(int32 gridID, int32 periodID, float64 starttime, float64 stoptime)

gridID IN: Grid id returned by GDcreate or GDattach

periodID IN: Period (or region) id from previous subset call

starttime IN: Start time of period

stoptime IN: Stop time of period

Purpose Defines a time period for a grid.

Return value Returns the grid period ID if successful or FAIL (-1) otherwise.

Description This routine defines a time period for a grid. It returns a grid period ID
which is used by the GDextractperiod routine to read all the entries of a
data field within the time period.. The grid structure must have the Time
field defined. This routine may be called after GDdefboxregion to provide
both geographic and time subsetting . In this case the user provides the id
from the previous subset call. (This same id is then returned by the
function.) Furthermore it can be called before or after GDdefvrtregion to
further refine a region. This routine may also be called “stand-alone” by
setting the input id to HDFE_NOPREVSUB (-1).

Example In this example, we define a time period with a start time of 35232487.2
and a stop time of 36609898.1.

starttime = 35232487.2;

stoptime = 36609898.1;

periodID = GDdeftimeperiod(gridID, HDFE_NOPREVSUB

starttime, stoptime);

If we had previously performed a geographic subset with id, regionID, then we could
further time subset this region with the call:

periodID = GDdeftimeperiod(gridID, regionID, starttime,

stoptime);

Note that periodID will have the same value as regionID.

FORTRAN integer*4 function gddeftmeper(gridid, periodID, starttime, stoptime)

 integer*4 gridid

integer*4 periodid

 2-129 170-TP-606-002

 real*8 starttime

 real*8 stoptime

 The equivalent FORTRAN code for the examples above are:

parameter (HDFE_NOPREVSUB=-1)

starttime = 35232487.2

stoptime = 36609898.1

periodid = gddeftmeper(swathid, HDFE_NOPREVSUB, starttime,

stoptime)

periodid = gddeftmeper(swathid, regionid, starttime,

stoptime)

 2-130 170-TP-606-002

Define a Vertical Subset Region

GDdefvrtregion
int32 GDdefvrtregion(int32 gridID, int32 regionID, char *vertObj, float64 range[])

gridID IN: Grid id returned by GDcreate or GDattach

regionID IN: Region (or period) id from previous subset call

vertObj IN: Dimension or field to subset

range IN: Minimum and maximum range for subset

Purpose Subsets on a monotonic field or contiguous elements of a dimension.

Return value Returns the grid region ID if successful or FAIL (-1) otherwise.

Description Whereas the GDdefboxregion routine subsets along the XDim and
YDim dimensions, this routine allows the user to subset along any other
dimension. The region is specified by a set of minimum and maximum
values and can represent either a dimension index (case 1) or field value
range(case 2) . In the second case, the field must be one-dimensional and
the values must be monotonic (strictly increasing or decreasing) in order
that the resulting dimension index range be contiguous. (For the current
version of this routine, the second option is restricted to fields with
number type: INT16, INT32, FLOAT32, FLOAT64.) This routine may be
called after GDdefboxregion to provide both geographic and “vertical”
subsetting . In this case the user provides the id from the previous subset
call. (This same id is then returned by the function.) This routine may
also be called “stand-alone” by setting the input id to
HDFE_NOPREVSUB (-1).

 This routine may be called up to eight times with the same region ID. It
this way a region can be subsetted along a number of dimensions.

 The GDregioninfo and GDextractregion routines work as before, however
the field to be subsetted, (the field specified in the call to GDregioninfo
and GDextractregion) must contain the dimension used explicitly in the
call to GDdefvrtregion (case 1) or the dimension of the one-dimensional
field (case 2).

Example Suppose we have a field called Pressure of dimension Height (= 10) whose
values increase from 100 to1000. If we desire all the elements with
values between 500 and 800, we make the call:
range[0] = 500.;

range[1] = 800.;

 2-131 170-TP-606-002

regionID = GDdefvrtregion(gridID, HDFE_NOPREVSUB, “Pressure”,
range);

The routine determines the elements in the Height dimension which correspond to the
values of the Pressure field between 500 and 800.

If we wish to specify the subset as elements 2 through 5 (0 - based) of the Height
dimension, the call would be:
range[0] = 2;

range[1] = 5;

regionID = GDdefvrtregion(gridID, HDFE_NOPREVSUB, “DIM:Height”,
range);

The “DIM:” prefix tells the routine that the range corresponds to elements of a
dimension rather than values of a field.

If a previous subset region or period was defined with id, subsetID, that we wish to refine
further with the vertical subsetting defined above we make the call:
regionID = GDdefvrtregion(gridID, subsetID, “Pressure”, range);

The return value, regionID is set equal to subsetID. That is, the subset region is modified
rather than a new one created.

 In this example, any field to be subsetted must contain the Height
dimension.

FORTRAN integer*4 function gddefvrtreg(gridid, regionid, vertobj, range)

 integer*4 gridid

 integer*4 regionid

character*(*) vertobj

 real*8 range

 The equivalent FORTRAN code for the examples above is:
parameter (HDFE_NOPREVSUB=-1)

range(1) = 500.

range(2) = 800.

regionid = gddefvrtreg(gridid, HDFE_NOPREVSUB, “Pressure”,
range)

range(1) = 3 ! Note 1-based element numbers

range(2) = 6

regionid = gddefvrtreg(gridid, HDFE_NOPREVSUB, “DIM:Height”,
range)

regionid = gddefvrtreg(gridid, subsetid, “Pressure”, range)

 2-132 170-TP-606-002

Detach from Grid Structure

GDdetach
intn GDdetach(int32 gridID)

gridID IN: Grid id returned by GDcreate or GDattach

Purpose Detaches from grid interface.

Return value Returns SUCCEED(0) if successful or FAIL(-1) otherwise.

Description This routine should be run before exiting from the grid file for every grid
opened by GDcreate or GDattach.

Example In this example, we detach the grid structure, ExampleGrid:

status = GDdetach(gridID);

FORTRAN integer function gddetach(gridid)

 integer*4 gridid

 The equivalent FORTRAN code for the example above is:

status = gddetach(gridid)

 2-133 170-TP-606-002

Retrieve Size of Specified Dimension

GDdiminfo
int32 GDdiminfo(int32 gridID, char *dimname)

gridID IN: Grid id returned by GDcreate or GDattach

dimname IN: Dimension name

Purpose Retrieve size of specified dimension.

Return value Size of dimension if successful or FAIL(-1) otherwise. A typical reason for
failure is an improper grid id or dimension name.

Description This routine retrieves the size of specified dimension.

Example In this example, we retrieve information about the dimension, "Bands":

dimsize = GDdiminfo(gridID, "Bands");

 The return value, dimsize, will be equal to 15

FORTRAN integer*4 function gddiminfo(gridid,dimname)

 integer*4 gridid

 character*(*) dimname

 The equivalent FORTRAN code for the example above is:

dimsize = gddiminfo(gridid, "Bands")

 2-134 170-TP-606-002

Duplicate a Region or Period

GDdupregion
int32 GDdupregion(int32 regionID)

regionID IN: Region or period id returned by GDdefboxregion,
GDdeftimeperiod, or GDdefvrtregion.

Purpose Duplicates a region.

Return value Returns new region or period ID if successful or FAIL (-1) otherwise.

Description This routine copies the information stored in a current region or period to
a new region or period and generates a new id. It is usefully when the
user wishes to further subset a region (period) in multiple ways.

Example In this example, we first subset a grid with GDdefboxregion, duplicate the
region creating a new region ID, regionID2, and then perform two
different vertical subsets of these (identical) geographic subset regions:

regionID = GDdefboxregion(gridID, cornerlon, cornerlat);

regionID2 = GDdupregion(regionID);

regionID = GDdefvrtregion(gridID, regionID, “Pressure”,

rangePres);

regionID2 = GDdefvrtregion(gridID, regionID2, “Temperature”,

rangeTemp);

FORTRAN integer*4 function gddupreg(regionid)

 integer*4 regionid

 The equivalent FORTRAN code for the example above is:

regionid = gddefboxreg(gridid, cornerlon, cornerlat)

regionid2 = gddupreg(regionid)

regionid = gddefvrtreg(gridid, regionid, ‘Pressure’,

rangePres)

regionid2 = gddefvrtreg(gridid, regionid2, ‘Temperature’,

rangeTemp)

 2-135 170-TP-606-002

Read a Region of Interest from a Field

GDextractregion
intn GDextractregion(int32 gridID, int32 regionID, char *fieldname, VOIDP buffer)

gridID IN: Grid id returned by GDcreate or GDattach

regionID IN: Region (period) id returned by GDdefboxregion
(GDdeftimeperiod)

fieldname IN: Field to subset

buffer OUT: Data Buffer

Purpose Extracts (reads) from subsetted region.

Return value Returns SUCCEED (0) if successful or FAIL (-1) otherwise.

Description This routine reads data into the data buffer from a subsetted region as
defined by GDdefboxregion.

Example In this example, we extract data from the “Temperature” field from the
region defined in GDdefboxregion. We first allocate space for the data
buffer. The size of the subsetted region for the field is given by the
Gdregioninfo routine.

datbuf = (float32) calloc(size, 4);

status = GDextractregion(GDid, regionID, "Temperature",

datbuf32);

FORTRAN integer*4 function gdextreg(gridid, regionid, fieldname, datbuf)

 integer*4 gridid

 integer*4 regionid

character*(*) fieldname

 <valid type> buffer(*)

 The equivalent FORTRAN code for the example above is:

status = gdextreg(gridid, regionid, "Temperature", datbuf)

 2-136 170-TP-606-002

Retrieve Information About Data Field in a Grid

GDfieldinfo
intn GDfieldinfo(int32 gridID, char *fieldname, int32 rank, int32 dims[], int32 *numbertype,

char *dimlist)

gridID IN: Grid id returned by GDcreate or GDattach

fieldlname IN: Fieldname

rank OUT: Pointer to rank of the field

dims OUT: Array containing the dimension sizes of the field

numbertype OUT: Pointer to the numbertype of the field

dimlist OUT: Dimension list

Purpose Retrieve information about a specific geolocation or data field in the grid.

Return value Returns SUCCEED(0) if successful or FAIL(-1) otherwise. A typical
reason for failure is the specified field does not exist.

Description This routine retrieves information on a specific data field.

Example In this example, we retrieve information about the Spectra data fields:

status = GDfieldinfo(gridID, "Spectra", &rank, dims,

 &numbertype, dimlist);

 The return parameters will have the following values:

 rank=3, numbertype=5, dims[3]={15,200,120} and

 dimlist="Bands,YDim,XDim"

FORTRAN integer function gdfldinfo (gridid, fieldname, rank, dims, numbertype,
dimlist)

 integer*4 gridid

 character*(*) fieldname

 integer*32 rank

 integer*4 dims(*)

 integer*4 numbertype

 character*(*) dimlist

 2-137 170-TP-606-002

 The equivalent FORTRAN code for the example above is:

status = gdfldinfo(gridid, "Spectra", dims, rank, numbertype,

dimlist)

 The return parameters will have the following values:

 rank=3, numbertype=5, dims[3]={120,200,15} and

 dimlist="XDim,YDim,Bands"

 Note that the dimensions array and the dimension list are in FORTRAN
order.

 2-138 170-TP-606-002

Get Fill Value for Specified Field

GDgetfillvalue
intn GDgetfillvalue(int32 gridID, char *fieldname, VOIDP fillvalue)

gridID IN: Grid id returned by GDcreate or GDattach

fieldname IN: Fieldname

fillvalue OUT: Space allocated to store the fill value

Purpose Retrieves fill value for the specified field.

Return value Returns SUCCEED(0) if successful or FAIL(-1) otherwise. Typical
reasons for failure are an improper grid id or number type or incorrect
fill value.

Description It is assumed the number type of the fill value is the same as the field.

Example In this example, we get the fill value for the "Temperature" field:

status = GDgetfillvalue(gridID, "Temperature", &tempfill);

FORTRAN integer function gdgetfill(gridid,fieldname,fillvalue)

 integer*4 gridid

 character*(*) fieldname

 <valid type> fillvalue(*)

 The equivalent FORTRAN code for the example above is:

status = gdgetfill(gridid, "Temperature", tempfill)

 2-139 170-TP-606-002

Get Row/Columns for Specified Longitude/Latitude
Pairs

GDgetpixels
intn GDgetpixels(int32 gridID, int32 nLonLat, float64 lonVal[], float64 latVal[], int32

pixRow[], int32 pixCol[])

gridID IN: Grid id returned by GDcreate or GDattach

nLonLat IN: Number of longitude/latitude pairs

lonVal IN: Longitude values in degrees

latVal IN: Latitude values in degrees

pixRow OUT: Pixel Rows

pixCol OUT: Pixel Columns

Purpose Returns the pixel rows and columns for specified longitude/latitude pairs.

Return value Returns SUCCEED(0) if successful or FAIL(-1) otherwise.

Description This routine converts longitude/latitude pairs into (0 - based) pixel rows
and columns. The origin is the upper left-hand corner of the grid. This
routine is the pixel subsetting equivalent of GDdefboxregion.

Example To convert two pairs of longitude/latitude values to rows and columns,
make the following call:

lonArr[0] = 134.2;

latArr[0] = -20.8;

lonArr[1] = 15.8;

latArr[1] = 84.6;

status = GDgetpixels(gridID, 2, lonArr, latArr, rowArr,

colArr);

The row and column of the two pairs will be returned in the rowArr and
colArr arrays.

 2-140 170-TP-606-002

FORTRAN integer function gdgetpix(gridid, nlonlat, lonval, latval, pixrow, pixcol)

 integer*4 gridid

 integer*4 nlonlat

real*8 lonval

real*8 latval

integer*4 pixrow

integer*4 pixcol

 The equivalent FORTRAN code for the example above is:

lonarr(1) = 134.2

latarr(1) = -20.8

lonarr(2) = 15.8

latarr(2) = 84.6

status = gdgetpix(gridid, 2, lonarr, latarr, rowarr, colarr)

Note that the row and columns values will be 1 - based.

 2-141 170-TP-606-002

Get Field Values for Specified Row/Columns

GDgetpixvalues
int32 GDgetpixvalues(int32 gridID, int32 nPixels, int32 pixRow[], int32 pixCol[], char

*fieldname, VOIDP buffer)

gridID IN: Grid id returned by GDcreate or GDattach

nPixels IN: Number of pixels

pixRow IN: Pixel Rows

pixCol IN: Pixel Columns

fieldname IN: Field from which to extract data values

buffer OUT: Buffer for data values

Purpose Read field data values for specified pixels.

Return value Returns size of data buffer if successful or FAIL(-1) otherwise.

Description This routine reads data from a data field for the specified pixels. It is the
pixel subsetting equivalent of GDextractregion. All entries along the non-
geographic dimensions (ie, NOT XDim and YDim) are returned. If the
buffer is set to NULL, no data is returned but the data buffer size can be
determined from the function return value.

Example To read values from the Spectra field with dimensions, Bands, YDim, and
XDim, make the following call:

float64 *datbuf;

bufsiz = GDgetpixvalues(gridID, 2, rowArr, colArr, "Spectra",

NULL);

/* bufsiz will be equal to 2 * NBANDS * 8 where NBANDS is

the value for the Bands dimension */

datbuf = (float64 *) malloc(bufsiz);

bufsiz = GDgetpixvalues(gridID, 2, rowArr, colArr, "Spectra",

datbuf);

 2-142 170-TP-606-002

FORTRAN integer*4 function gdgetpixval(gridid, npixels, pixrow, pixcol, fieldname,
buffer)

 integer*4 gridid

 integer*4 nlonlat

integer*4 pixrow

integer*4 pixcol

 character*(*) fieldname

 <valid type> buffer(*)

 The equivalent FORTRAN code for the example above is:

real*8 datbuf(2,NBANDS)

bufsiz = gdgetpixval(gridid, 2, rowarr, colarr, "Spectra",

datbuf)

 2-143 170-TP-606-002

Return Information About a Grid Structure

GDgridinfo
intn GDgridinfo(int32 gridID, int32 *xdimsize, int32 *ydimsize, float64 upleft[z], float64

lowright[z])

gridID IN: Grid id returned by GDcreate or GDattach

xdimsize OUT: Number of columns in grid

ydimsize OUT: Number of rows in grid

upleft OUT: Location, in meters, of upper left corner

lowright OUT: Location, in meters, of lower right corner

Purpose Returns position and size of grid

Return value Returns SUCCEED(0) if successful or FAIL(-1) otherwise

Description This routine returns the number of rows, columns and the location, in
meters, of the upper left and lower right corners of the grid image.

Example In this example, we retrieve information from a previously created grid
with a call to GDattach:

status = GDgridinfo(gridID, &xdimsize, &ydimsize, upleft,

 lowrgt);

FORTRAN integer function gdgridinfo(gridid, xdimsize, ydimsize, upleft, lowright)

 integer*4 gridid

 integer*4 xdimsize

 integer*4 ydimsize

 real*8 upleft(z)

 real*8 lowright(z)

 The equivalent FORTRAN code for the example above is:

status = gdgridinfo(gridid, xdimsize, ydimsize, upleft,

 lowrgt);

 2-144 170-TP-606-002

Retrieve Information About Grid Attributes

GDinqattrs
int32 GDinqattrs(int32 gridID, char *attrlist, int32 *strbufsize)

gridID IN: Grid id returned by GDcreate or GDattach

attrlist OUT: Attribute list (entries separated by commas)

strbufsize OUT: String length of attribute list

Purpose Retrieve information about attributes defined in grid.

Return value Number of attributes found if successful or FAIL (-1) otherwise.

Description The attribute list is returned as a string with each attribute name
separated by commas. If attrlist is set to NULL, then the routine will
return just the string buffer size, strbufsize. This variable does not count
the null string terminator.

Example In this example, we retrieve information about the attributes defined in a
grid structure. We assume that there are two attributes stored, attrOne
and attr_2:

nattr = GDinqattrs(gridID, NULL, strbufsize);

 The parameter, nattr, will have the value 2 and strbufsize will have value
14.

nattr = GDinqattrs(gridID, attrlist, strbufsize);

 The variable, attrlist, will be set to:

 "attrOne,attr_2".

FORTRAN integer*4 function gdinqattrs(gridid,attrlist,strbufsize)

 integer*4 gridid

 character*(*) attrlist

 integer*4 strbufsize

 The equivalent FORTRAN code for the example above is:

nattr = gdinqattrs(gridid, attrlist, strbufsize)

 2-145 170-TP-606-002

Retrieve Information About Dimensions Defined in
Grid

GDinqdims
int32 GDinqdims(int32 gridID, char *dimname, int32 dims[])

gridID IN: Grid id returned by GDcreate or GDattach

dimname OUT: Dimension list (entries separated by commas)

dims OUT: Array containing size of each dimension

Purpose Retrieve information about dimensions defined in grid.

Return value Number of dimension entries found if successful or FAIL(-1) otherwise. A
typical reason for failure is an improper grid id.

Description The dimension list is returned as a string with each dimension name
separated by commas. Output parameters set to NULL will not be
returned.

Example To retrieve information about the dimensions, use the following statement:

ndim = GDinqdims(gridID, dimname, dims);

 The parameter, dimname, will have the value: "Xgrid,Ygrid,Bands"

 with dims[3]={120,200,15}

FORTRAN integer*4 function gdinqdims(gridid,dimname,dims)

 integer*4 gridid

 character*(*) dimname

 integer*4 dims(*)

 The equivalent FORTRAN code for the example above is:

ndim = gdinqdims(gridid, dimname, dims)

 2-146 170-TP-606-002

Retrieve Information About Data Fields Defined in Grid

GDinqfields
int32 GDinqfields(int32 gridID, char *fieldlist, int32 rank[], int32 numbertype[])

gridID IN: Grid id returned by GDcreate or GDattach

fieldlist OUT: Listing of data fields (entries separated by commas)

rank OUT: Array containing the rank of each data field

numbertype OUT: Array containing the numbertype of each data field

Purpose Retrieve information about the data fields defined in grid.

Return value Number of data fields found if successful or FAIL(-1) otherwise. A typical
reason is an improper grid id.

Description The field list is returned as a string with each data field separated by
commas. The rank and numbertype arrays will have an entry for each
field. Output parameters set to NULL will not be returned.

Example To retrieve information about the data fields, use the following statement:

nfld = GDinqfields(gridID, fieldlist, rank, numbertype);

 The parameter, fieldlist, will have the value: "Temperature,Spectra"

 with rank[2]={2,3}, numbertype[2]={5,5}

FORTRAN integer*4 function gdinqdflds(gridid, fieldlist, rank, numbertype)

 integer*4 gridid

 character*(*) fieldlist

 integer*4 rank(*)

 integer*4 numbertype(*)

 The equivalent FORTRAN code for the example above is:

nfld = gdinqflds(gridID, fieldlist, rank, numbertype)

 The parameter, fieldlist, will have the value: "Spectra,Temperature"

 with rank[2]={3,2}, numbertype[2]={5,5}

 2-147 170-TP-606-002

Retrieve Grid Structures Defined in HDF-EOS File

GDinqgrid
int32 GDinqgrid(char * filename, char *gridlist, int32 *strbufsize)

filename IN: HDF-EOS filename

gridlist OUT: Grid list (entries separated by commas)

strbufsize OUT: String length of grid list

Purpose Retrieves number and names of grids defined in HDF-EOS file.

Return value Number of grids found of successful or FAIL (-1) otherwise.

Description The grid list is returned as a string with each grid name separated by
commas. If gridlist is set to NULL, then the routine will return just the
string buffer size, strbufsize. If strbufsize is also set to NULL, the routine
returns just the number of grids. Note that strbufsize does not count the
null string terminator.

Example In this example, we retrieve information about the grids defined in an
HDF-EOS file, HDFEOS.hdf. We assume that there are two grids stored,
GridOne and Grid_2:

ngrid = GDinqgrid(“HDFEOS.hdf”, NULL, strbufsize);

 The parameter, ngrid, will have the value 2 and strbufsize will have value
16.

ngrid = GDinqgrid(“HDFEOS.hdf”, gridlist, strbufsize);

 The variable, gridlist, will be set to:

 “GridOne,Grid_2”.

FORTRAN integer*4 function gdinqgrid(filename,gridlist,strbufsize)

 character*(*) filename

 character*(*) gridlist

integer*4 strbufsize

 The equivalent FORTRAN code for the example above is:

ngrid = gdinqgrid(‘HDFEOS.hdf’, gridlist, strbufsize)

 2-148 170-TP-606-002

Perform Bilinear Interpolation on Grid Field

GDinterpolate
int32 GDinterpolate(int32 gridID, int32 nInterp, float64 lonVal[], float64 latVal[], char

*fieldname, float64 interpVal[])

gridID IN: Grid id returned by GDcreate or GDattach

nInterp IN: Number of interpolation points

lonVal IN: Longitude of interpolation points

latVal IN: Latitude of interpolation points

fieldname OUT: Field from which to interpolate data values

interpVal OUT: Buffer for interpolated data values

Purpose Performs bilinear interpolation on a grid field.

Return value Returns size in bytes of interpolated data values if successful or FAIL(-1)
otherwise.

Description This routine performs bilinear interpolation on a grid field. It assumes
that the pixel data values are uniformly spaced which is strictly true only
for an infinitesimally small region of the globe but is a good
approximation for a sufficiently small region. The default position of the
pixel value is pixel center, however if the pixel registration has been set to
HDFE_CORNER (with the GDdefpixreg routine) then the value is located
at one of the four corners (HDFE_GD_UL, _UR, _LL, _LR) specified by
the GDdeforigin routine. All entries along the non-geographic dimensions
(ie, NOT XDim and YDim) are interpolated and all interpolated values
are returned as FLOAT64. The data buffer size can be determined by
setting the interpVal parameter to NULL. The reference for the
interpolation algorithm is Numerical Recipes in C (2nd ed). (Note for the
current version of this routine, the number type of the field to be
interpolated is restricted to INT16, INT32, FLOAT32, FLOAT64.)

Example To interpolate the Spectra field at two geographic data points:

lonVal[0] = 134.2;

latVal[0] = -20.8;

lonVal[1] = 15.8;

latVal[1] = 84.6;

float64 *interVal;

 2-149 170-TP-606-002

bufsiz = GDinterpolate(gridID, 2, lonVal, latVal, "Spectra",

NULL);

/* bufsiz will be equal to 2 * NBANDS * 8 where NBANDS is the

value for the Bands dimension */

interpVal = (float64 *) malloc(bufsiz);

bufsiz = GDinterpolate(gridID, 2, lonVal, latVal, "Spectra",

interpVal);

FORTRAN integer*4 function gdinterpolate(gridid, ninterp, lonval, latval, fieldname,
interpval)

 integer*4 gridid

 integer*4 ninterp

real*8 lonval

real*8 latval

 character*(*) fieldname

 real*8 interpval

 The equivalent FORTRAN code for the example above is:

real*8 interpval(NBANDS, 2)

bufsiz = gdinterpolate(gridid, 2, lonval, latval, "Spectra",

interpval)

 2-150 170-TP-606-002

Return Number of Specified Objects in a Grid

GDnentries
int32 GDnentries(int32 gridID, int32 entrycode, int32 *strbufsize)

gridID IN: Grid id returned by GDcreate or GDattach

entrycode IN: Entrycode

strbufsize OUT: String buffer size

Purpose Returns number of entries and descriptive string buffer size for a specified
entity.

Return value Number of entries if successful or FAIL(-1) otherwise. A typical reason for
failure is an improper grid id or entry code.

Description This routine can be called before using the inquiry routines in order to
determine the sizes of the output arrays and descriptive strings. The string
length does not include the NULL terminator.

 The entry codes are: HDFE_NENTDIM (0) - Dimensions

 HDFE_NENTDFLD (4) - Data Fields

Example In this example, we determine the number of data field entries and the size
of the field list string.

ndims = GDnentries(gridID, HDFE_NENTDFLD, &bufsz);

FORTRAN integer*4 function gdnentries(gridid,enyrtcode, bufsize)

 integer*4 gridid

 integer*4 entrycode

 integer*4 bufsize

 The equivalent FORTRAN code for the example above is:

ndims = gdnentries(gridid, 4, bufsz)

 2-151 170-TP-606-002

Open HDF-EOS File

GDopen
int32 GDopen(char *filename, intn access)

filename IN: Complete path and filename for the file to be opened

access IN: DFACC_READ, DFACC_RDWR or DFACC_CREATE

Purpose Opens or creates HDF file in order to create, read, or write a grid.

Return value Returns the grid file id handle(fid) if successful or FAIL(-1) otherwise.

Description This routine creates a new file or opens an existing one, depending on the
access parameter.

 Access codes:

 DFACC_READ Open for read only. If file does not exist, error

 DFACC_RDWR Open for read/write. If file does not exist, create it

 DFACC_CREATE If file exist, delete it, then open a new file for
 read/write

Example In this example, we create a new grid file named, GridFile.hdf. It returns
the file handle, fid.

fid = GDopen("GridFile.hdf", DFACC_CREATE);

FORTRAN integer*4 function gdopen(filename, access)

 character*(*) filename

 integer access
 The access codes should be defined as parameters:

 parameter (DFACC_READ=1)

 parameter (DFACC_RDWR=3)

 parameter (DFACC_CREATE=4)

 The equivalent FORTRAN code for the example above is:

fid = gdopen("GridFile.hdf", DFACC_CREATE)

Note to users of the SDP Toolkit: Please refer to the Release 6A.07 SDP Toolkit User Guide for
the ECS Project (333-CD-605-003), Section 6.2.1.2 for information on how to obtain a file name
(referred to as a ”physical file handle”) from within a PGE. See also Section 9 of this document
for code examples.

 2-152 170-TP-606-002

Return Grid Origin Information

GDorigininfo
intn GDorigininfo(int32 gridID, int32 *origincode)

gridID IN: Grid id returned by GDcreate or GDattach

origincode IN: Origin code

Purpose Retrieve origin code.

Return value Origin code if successful or FAIL (-1) otherwise.

Description This routine retrieves the origin code.

Example In this example, we retrieve the origin code defined in GDdeforigin.

status = GDorigininfo(gridID, &origincode);

 The return value, origincode, will be equal to 3

FORTRAN integer function gdorginfo(gridid,origincode)

 integer*4 gridid

 integer*4 origincode

 The equivalent FORTRAN code for the above example is :

status = gdorginfo(gridid, origincode)

 2-153 170-TP-606-002

Return Pixel Registration Information

GDpixreginfo
intn GDpixreginfo(int32 gridID, int32 *pixregcode)

gridID IN: Grid id returned by GDcreate or GDattach

pixregcode IN: Pixel registration code

Purpose Retrieve pixel registration code.

Return value Pixel registration code if successful or FAIL (-1) otherwise.

Description This routine retrieves the pixel registration code.

Example In this example, we retrieve the pixel registration code defined in
GDdefpixreg.

status = GDpixreginfo(gridID, &pixregcode);

 The return value, pixregcode, will be equal to 1

FORTRAN integer function gdpreginfo(gridid,pixregcode)

 integer*4 gridid

 integer*4 pixregcode

 The equivalent FORTRAN code for the above example is :

status = gdpreginfo(gridid, pixregcode)

 2-154 170-TP-606-002

Retrieve Grid Projection Information

GDprojinfo
intn GDprojinfo(int32 gridID, int32 *projcode, int32 *zonecode, int32 *spherecode, float64

projparm[])

gridID IN: Grid id returned by GDcreate or GDattach

projcode OUT: GCTP projection code

zonecode OUT: GCTP zone code used by UTM projection

spherecode OUT: GCTP spheroid code

projparm OUT: GCTP projection parameter array

Purpose Retrieves projection information of grid

Return Value Returns SUCCEED(0) if successful or FAIL(-1) otherwise

Description Retrieves the GCTP projection code, zone code, spheroid code and the
projection parameters of the grid

Example In this example, we are retrieving the projection information from a grid
attached to with GDattached:

status = GDprojinfo(gridID, &projcode, &zonecode, &spherecode,

projparm);

FORTRAN integer function gdprojinfo(gridid, projcode, zonecode, spherecode,
projparm)

 integer*4 gridid

 integer*4 projcode

 integer*4 zonecode

 integer*4 spherecode

 real*8 projparm(*)

 The equivalent FORTRAN code for the example above is:

status = gdprojinfo(gridid, projcode, zonecode, spherecode,

projparm)

 2-155 170-TP-606-002

Read Grid Attribute

GDreadattr
intn GDreadattr(int32 gridID, char *attrname, VOIDP datbuf)

gridID IN: Grid id returned by GDcreate or GDattach

attrname IN: Attribute name

datbuf OUT: Buffer allocated to hold attribute values

Purpose Reads attribute from a grid.

Return value Returns SUCCEED(0) if successful or FAIL(-1) otherwise. Typical
reasons for failure are an improper grid id or number type or incorrect
attribute name.

Description The attribute is passed by reference rather than value in order that a
single routine suffice for all numerical types.

Example In this example, we read a single precision (32 bit) floating point attribute
with the name "ScalarFloat":

status = GDreadattr(gridID, "ScalarFloat", &f32);

FORTRAN integer function gdrdattr(gridid, attrname,datbuf)

 integer*4 gridid

 character*(*) attrname

 <valid type> datbuf(*)

 The equivalent FORTRAN code for the example above is:

status = gdrdattr(gridid, "ScalarFloat", f32)

 2-156 170-TP-606-002

Read Data From a Grid Field

GDreadfield
intn GDreadfield(int32 gridID, char *fieldname, int32 start[], int32 stride[], int32 edge[],

VOIDP buffer)

gridID IN: Grid id returned by GDcreate or GDattach

fieldname IN: Name of field to read

start IN: Array specifying the starting location within each dimension

stride IN: Array specifying the number of values to skip along each
 dimension

edge IN: Array specifying the number of values to write along each
 dimension

buffer IN: Buffer to store the data read from the field

Purpose Reads data from a grid field.

Return value Returns SUCCEED(0) if successful or FAIL(-1) otherwise. Typical
reasons for failure are improper grid id of unknown fieldname.

Description The values within start, stride, and edge arrays refer to the grid field
(input) dimensions. The output data in buffer is written to contiguously.
The default values for start and stride are 0 and 1 respectively and are
used if these parameters are set to NULL. The default values for edge are
(dim - start) / stride where dim refers to the size of the dimension.

Example In this example, we read data from the 10th row (0-based) of the
Temperature field.

float32 row[120];

int32 start[2]={10,1}, edge[2]={1,120};

status = GDreadfield(gridID, "Temperature", start, NULL, edge,

row);

 2-157 170-TP-606-002

FORTRAN integer function

 gdrdfld(gridid,fieldname,start,stride,edge,buffer)

 integer*4 gridid

 character*(*) fieldname

 integer*4 start(*)

 integer*4 stride(*)

 integer*4 edge(*)

 <valid type> buffer(*)

 The start, stride, and edge arrays must be defined explicitly, with the start
 array being 0-based.

 The equivalent FORTRAN code for the example above is:

real*4 row(2000)

integer*4 start(2), stride(2), edge(2)

start(1) = 10

start(2) = 0

stride(1) = 1

stride(2) = 1

edge(1) = 2000

edge(2) = 1

status = gdrdfld(gridid, "Temperature", start, stride, edge,

row)

 2-158 170-TP-606-002

Read from Tile within Field

GDreadtile
intn GDreadtile(int32 gridID, char *fieldname, int32 tilecoords[], VOIDP buffer)

gridID IN: Grid id returned by GDcreate or GDattach

fieldname IN: Fieldname

tilecoords IN: Array of tile coordinates

buffer OUT: Data to be written to tile

Purpose Reads from tile within field.

Return value Returns SUCCEED(0) if successful or FAIL(-1) otherwise.

Description This routine reads a single tile of data from a field. If the data is to be
read tile by tile, this routine is more efficient than GDreadfield. In all
other cases, the later routine should be used. GDreadtile does not work on
non-tiled fields. Note that the coordinates in terms of tiles, not data
elements.

Example In this example. we read one tile from the Temperature field (see
GDdeftile example) located at the second column of the first row of tiles.
Buffer should contain space for 200 * 100 * 4 = 80000 bytes.
tilecoords[0] = 0;
tilecoords[1] = 1;
status = GDreadtile(gridid, “Temperature”, tilecoords, buffer);

FORTRAN integer function gdrdtle(gridid, fieldname,tilecoords, buffer)

 integer*4 gridid

 character*(*) fieldname

 integer*4 tilecoords(*)

 <valid type> buffer(*)

 The equivalent FORTRAN code for the first example above is:
tilecoords(1) = 1;
tilecoords(2) = 0;
status = gdrdtle(gridid, “Temperature”, tilecoords, buffer)

Note that tilecoords for FORTRAN are reversed from the C language example but the
values are still 0-based.

 2-159 170-TP-606-002

Return Information About a Region

GDregioninfo
intn GDregioninfo(int32 gridID, int32 regionID, char * fieldname, int32 *ntype, int32 *rank,
int32 dims[], int32 *size, float64 upleftpt[], float64 lowrightpt[])

gridID IN: Grid id returned by GDcreate or GDattach

regionID IN: Region (period) id returned by GDdefboxregion
(GDdeftimeperiod)

fieldname IN: Field to subset

ntype OUT: Number type of field

rank OUT: Rank of field

dims OUT: Dimensions of subset region

size OUT: Size in bytes of subset region

upleftpt OUT: Upper left point of subset region

lowrightpt OUT: Lower right point of subset region

Purpose Retrieves information about the subsetted region.

Return value Returns SUCCEED (0) if successful or FAIL (-1) otherwise.

Description This routine returns information about a subsetted region for a particular
field. It is useful when allocating space for a data buffer for the region.
Because of differences in number type and geolocation mapping, a given
region will give different values for the dimensions and size for various
fields. The upleftpt and lowrightpt arrays can be used when creating a
new grid from the subsetted region.

Example In this example, we retrieve information about the region defined in
GDdefboxregion for theTemperature field. We use this to allocate space
for data in the subsetted region.

status = GDregioninfo(GDid, regionID, "Temperature", &ntype,

 &rank, dims, &size, upleft, lowright);

 2-160 170-TP-606-002

FORTRAN integer function gdreginfo(gridid, regionid, fieldname, ntype, rank, dims,
size, upleftpt, lowrightpt)

 integer*4 gridid

 integer*4 gridid

 character*(*) fieldname

 integer*4 ntype

 integer*4 rank

 integer*4 dims(*)

 integer*4 size

 real*8 upleftpt

 real*8 lowrightpt

 The equivalent FORTRAN code for the example above is:

status = gdreginfo(gridid, regid, "Spectra", ntype, rank, dims,

size, upleftpt, lowrightpt)

 2-161 170-TP-606-002

Set Fill Value for a Specified Field

GDsetfillvalue
intn GDsetfillvalue(int32 gridID, char *fieldname, VOIDP fillvalue)

gridID IN: Grid id returned by GDcreate or GDattach

fieldname IN: Fieldname

fillvalue IN: Pointer to the fill value to be used

Purpose Sets fill value for the specified field.

Return value Returns SUCCEED(0) if successful or FAIL(-1) otherwise. Typical
reasons for failure are an improper grid id or number type.

Description The fill value is placed in all elements of the field which have not been
explicitly defined.

Example In this example, we set a fill value for the "Temperature" field:

tempfill = -999.0;

status = GDsetfillvalue(gridID, "Temperature", &tempfill);

FORTRAN integer function

 gdsetfill(gridid,fieldname,fillvalue)

 integer*4 gridid

 character*(*) fieldname

 <valid type> fillvalue(*)

 The equivalent FORTRAN code for the example above is:

status = gdsetfill(gridid, "Temperature", -999.0)

 2-162 170-TP-606-002

Set Tile Cache Parameters

GDsettilecache
intn GDsettilecache(int32 gridID, char *fieldname, int32 maxcache, int32 cachecode)

gridID IN: Grid id returned by GDcreate or GDattach

fieldname IN: Fieldname

maxcache IN: Maximum number of tiles to cache in memory

cachecode IN: Currently must be set to 0

Purpose Sets tile cache parameters

Return Value Returns SUCCEED(0) if successful or FAIL(-1) otherwise

Description This routine sets the maximum cache for tiling. If the cache is set fro a
fewer number of tiles than needed for a particular subset of the field, there
can be serious efficiency problems. Therefore it is recommended that this
routine not be used unless one is aware for each field, the expected size of
a particular subset and it’s position relative to the tiles. The maxcache
value should be set to the number of tiles which fit along the fastest
varying dimension.

Example In this example, we set maxcache to 10 tiles. The particular subsetting
envisioned for the Spectra field (defined in the GDdeftile example) would
never cross more than 10 tiles along the field’s fastest varying dimension,
ie, XDim..

status = GDsettilecache(gridID, “Spectra”, 10, 0);

FORTRAN integer function gdsettleche(gridid, fieldname,maxcache,cachecode)

 integer*4 gridid

character*(*) fieldname

integer*4 maxcache

integer*4 cachecode

 The equivalent FORTRAN code for the example above is:

status = gdsettleche(gridid, ‘Spectra’, 10, 0)

 2-163 170-TP-606-002

Set Tiling/Compression Parameters

GDsettilecomp
intn GDsettilecomp(int32 gridID, char fieldname, int32 tilerank, int32 tiledims, int32 compcode,

intn *compparm)

gridID IN: Grid id returned by GDcreate or GDattach

fieldname IN: Field name

tilerank IN: The number of tile dimensions

tiledims IN: Tile dimensions

compcode IN: HDF compression code

compparm IN: Compression parameters(if applicable)

Purpose Set tiling and compression parameters for a field that has fill values.

Return value Returns SUCCEED(0) if successful or FAIL(-1) otherwise.

Description This routine was added as a fix to a bug in HDF-EOS. The current
method of implementation didn’t allow the user to have a field with fill
values and use tiling and compression. This function allows the user to
access all of these features. This function must be called in a particular
order.

Example This function must be used in a particular sequence with other HDF_EOS
Grid functions.

 (1) GDdeffield – Define field

 (2) GDsetfillvalue – Set fill value for field

 (3) GDsettilecomp – Set tiling(chunking) and compression parameters for
field

tile_dim[0] = 1;

tile_dim[1] = 128;

tile_dim[2] = 512;

compparm[1] = 5;

status = GDsettilecomp(gridID, “AveSceneElev”, 3, tile_dim,
HDFE_COMP_DEFLATE, compparm);

NOTE: This routine is currently implemented in “C” only. If the need arises, a
FORTRAN function will be added.

 2-164 170-TP-606-002

Retreive Tiling Information for Field

GDtileinfo
intn GDtileinfo(int32 gridID, char *fieldname, int32 *tilecode, int32 *tilerank, int32 tiledims[])

gridID IN: Grid id returned by GDcreate or GDattach

fieldname IN: Fieldname

tilecode OUT: Tile code: HDF_TILE, HDF_NOTILE

tilerank OUT: The number of tile dimensions

tiledims OUT: Tile dimensions

Purpose Retrieves tiling information about a field.

Return value Returns SUCCEED(0) if successful or FAIL(-1) otherwise.

Description This routine returns the tiling code, tiling rank, and tiling dimensions for a
given field.

Example To retreive the tiling information about the Pressure field defined in the
GDdeftile section:

status = GDtileinfo(gridID, “Pressure”, &tilecode, &tilerank,

tiledims);

The tilecode parameter will be set to 1, the tilerank to 2, and tiledims to {100,200}.

FORTRAN integer function gdtleinfo(gridid,fieldname tilecode,tilerank,tiledims)

 integer*4 gridid

character*(*) fieldname

 integer*4 tilecode

integer*4 tilerank

integer*4 tiledims(*)

 The equivalent FORTRAN code for the example above is:
status = gdtileinfo(gridid, ‘Pressure’, tilecode, tilerank,
tiledims)

The tilecode parameter will be set to 1, the tilerank to 2, and tiledims to {200,100}.

 2-165 170-TP-606-002

Write/Update Grid Attribute

GDwriteattr
intn GDwriteattr(int32 gridID, char *attrname, int32 ntype, int32 count, VOIDP datbuf)

gridID IN: Grid id returned by GDcreate or GDattach

attrname IN: Attribute name

ntype IN: Number type of attribute

count IN: Number of values to store in attribute

datbuf IN: Attribute values

Purpose Writes/Updates attribute in a grid.

Return value Returns SUCCEED(0) if successful or FAIL(-1) otherwise. Typical
reasons for failure are an improper grid id or number type.

Description If the attribute does not exist, it is created. If it does exist, then the value(s)
is (are) updated. The attribute is passed by reference rather than value in
order that a single routine suffice for all numerical types. Because of this
a literal numerical expression should not be used in the call.

Example In this example. we write a single precision (32 bit) floating point number
with the name "ScalarFloat" and the value 3.14:
f32 = 3.14;
status = GDwriteattr(gridid, "ScalarFloat", DFNT_FLOAT32, 1,
 &f32);

 We can update this value by simply calling the routine again with the new
value:
f32 = 3.14159;
status = GDwriteattr(gridid, "ScalarFloat", DFNT_FLOAT32, 1,
 &f32);

FORTRAN integer function gdwrattr(gridid, attrname,
ntype, count, datbuf)

 integer*4 gridid

 character*(*) attrname

 integer*4 ntype

 integer*4 count

 <valid type> datbuf(*)

 2-166 170-TP-606-002

 The equivalent FORTRAN code for the first example above is:
parameter (DFNT_FLOAT32=5)
f32 = 3.14
status = gdwrattr(gridid, "ScalarFloat", DFNT_FLOAT32, 1,
 f32)

 2-167 170-TP-606-002

Write Data to a Grid Field

GDwritefield
intn GDwritefield(int32 gridID, char *fieldname, int32 start[], int32 stride[], int32 edge[],

VOIDP data)

gridID IN: Grid id returned by GDcreate or GDattach

fieldname IN: Name of field to write

start IN: Array specifying the starting location within each dimension (0-
 based)

stride IN: Array specifying the number of values to skip along each
 dimension

edge IN: Array specifying the number of values to write along each
 dimension

data IN: Values to be written to the field

Purpose Writes data to a grid field.

Return value Returns SUCCEED(0) if successful or FAIL(-1) otherwise.

Description The values within start, stride, and edge arrays refer to the grid field
(output) dimensions. The input data in the data buffer is read from
contiguously. The default values for start and stride are 0 and 1
respectively and are used if these parameters are set to NULL. The
default values for edge are (dim - start) / stride where dim refers to the
size of the dimension. Note that the data buffer for a compressed field
must be the size of the entire field as incremental writes are not supported
by the underlying HDF routines. If this is not possible due to, for
example, memory limitations, then the user should consider tiling. See
GDdeftile for further information.

Example In this example, we write data to the Temperature field.
float32 temperature [200][120];
/* Define elements of temperature array */
status = GDwritefield(gridID, "Temperature", NULL, NULL,
 NULL, temperature);

 We now update Row 10 (0 - based) in this field:
float32 newrow[2000];
int32 start[2]={0,10}, edge[2]={2000,1};
/* Define elements of newrow array */
status = GDwritefield(gridID, "Temperature", start, NULL,
 edge, newrow);

 2-168 170-TP-606-002

FORTRAN integer function

 gdwrfld(gridid,fieldname,start,stride,edge,data)

 integer*4 gridid

 character*(*) fieldname

 integer*4 start(*)

 integer*4 stride(*)

 integer*4 edge(*)

 <valid type> data(*)

 The start, stride, and edge arrays must be defined explicitly, with the start
array being 0-based.

 The equivalent FORTRAN code for the example above is:
real*4 temperature(2000,1000)

integer*4 start(2), stride(2), edge(2)

start(1) = 0

start(2) = 0

stride(1) = 1

stride(2) = 1

edge(1) = 2000

edge(2) = 1000

status = gdwrfld(gridid, "Temperature", start, stride, edge,

 temperature)

 We now update Row 10 (0 - based) in this field:
real*4 newrow(2000)

integer*4 start(2), stride(2), edge(2)

start(1) = 10

start(2) = 0

stride(1) = 1

stride(2) = 1

edge(1) = 2000

edge(2) = 1

status = gdwrfld(gridid, "Temperature", start, stride, edge,

 newrow)

 2-169 170-TP-606-002

Write Field Metadata for an Existing Field Not Defined
With the Grid API

GDwritefieldmeta
intn GDwritefieldmeta(int32 gridID, char *fieldname, char *dimlist, int32 numbertype)

gridID IN: Grid id returned by GDcreate or GDattach

fieldname IN: Name of field that metadata information is to be written

dimlist IN: Dimension list of field

numbertype IN: Number type of data in field

Purpose Writes field metadata for an existing grid field not defined with the Grid
API

Return Value Returns SUCCEED(0) if successful or FAIL(-1) otherwise

Description This routine writes the field metadata for a grid field not defined by the
Grid API

Example

status = GDwritefieldmeta(gridID, "ExternField",

"Ydim,Xdim", DFNT_FLOAT32);

FORTRAN integer function gdwrmeta(gridid, fieldname, dimlist, numbertype)

 integer*4 gridid

 character*(*) fieldname

 character*(*) dimlist

 integer*4 numbertype

 The equivalent FORTRAN code for the example above is:

status = gdwrmeta(gridid, "ExternField, "Xdim,Ydim",

DFNT_FLOAT32)

 2-170 170-TP-606-002

Write to Tile within Field

GDwritetile
intn GDwritetile(int32 gridID, char *fieldname, int32 tilecoords[], VOIDP data)

gridID IN: Grid id returned by GDcreate or GDattach

fieldname IN: Fieldname

tilecoords IN: Array of tile coordinates

data IN: Data to be written to tile

Purpose Writes to tile within field.

Return value Returns SUCCEED(0) if successful or FAIL(-1) otherwise. Typical
reasons for failure are an improper grid id or number type.

Description This routine writes a single tile of data to a field. If the data to be written
to a field can be arranged tile by tile, this routine is more efficient than
GDwritefield. In all other cases, the later routine should be used.
GDwritetile does not work on non-tiled fields. Note that the coordinates
in terms of tiles, not data elements.

Example In this example. we write one tile to the Temperature field (see GDdeftile
example) at the second column of the first row of tiles. Note that there are
200 * 100 * 4 = 80000 bytes in data:
tilecoords[0] = 0;
tilecoords[1] = 1;
status = GDwritetile(gridid, “Temperature”, tilecoords, data);

FORTRAN integer function gdwrtle(gridid, fieldname,tilecoords, data)

 integer*4 gridid

 character*(*) fieldname

 integer*4 tilecoords(*)

 <valid type> data(*)

 The equivalent FORTRAN code for the first example above is:
tilecoords(1) = 1
tilecoords(2) = 0
status = gdwrtle(gridid, “Temperature”, tilecoords, data)

Note that tilecoords for FORTRAN are reversed from the C language example but the
values are still 0-based.

2.1.4 HDF-EOS Utility Routines

This section contains an alphabetical listing of the HDF-EOS utility routines.

 2-171 170-TP-606-002

Convert Among Angular Units

EHconvAng
float64 EHconvAng(float64 inAngle, intn code)

inAngle IN: Input angle

code IN: Conversion code

Purpose Convert among various angular units.

Return value Returns angle in desired units if successful or FAIL (-1) otherwise.

Description This routine converts angles between three units, decimal degrees,
radians, and packed degrees-minutes-seconds. In the later unit, an angle
is expressed as a integral number of degrees and minutes and a float point
value of seconds packed as a single float64 number as follows:
DDDMMMSSS.SS. The six conversion codes are: HDFE_RAD_DEG (0),
HDFE_DEG_RAD (1), HDFE_DMS_DEG (2), HDFE_DEG_DMS (3),
HDFE_RAD_DMS (0), and HDFE_DMS_RAD (1), where the first three
letter code (RAD - radians, DEG - decimal degrees, DMS - packed
degrees-minutes-seconds) corresponds to the input angle and the second
to the desired output angular unit.

Example To convert 27.5 degrees to packed format:

inAng = 27.5;

outAng = EHconvAng(inAng, HDFE_DEG_DMS);

 “outAng” will contain the value: 27030000.00.

FORTRAN real*8 function ehconvang(inangle,code)

 real*8 inangle

 integer code

The equivalent FORTRAN code for the example above is:
inangle = 27.5

outangle = ehconvang(inangle,3)

 2-172 170-TP-606-002

Get HDF-EOS Version String

EHgetversion
intn EHgetversion(int32 fid, char *version)

fid IN: File id returned by SWopen, GDopen, or PTopen.

version OUT: HDF-EOS version string

Purpose Get HDF-EOS version string.

Return value Returns SUCCEED(0) if successful or FAIL(-1) otherwise.

Description This routine returns the HDF-EOS version string of an HDF-EOS file.
This designates the version of HFD-EOS that was used to create the file.
This string if of the form: “HDFEOS_Vmaj.min” where maj is the major
version and min is the minor version.

Example To get the HDF-EOS version (assumed to be 2.7) used to create the HDF-
EOS file: “SwathFile.hdf”:

char version[16];

fid = SWopen(“SwathFile.hdf”, DFACC_READ);

status = EHgetversion(fid, version);

 “version” will contain the string: “HDFEOS_V2.7”.

FORTRAN integer function ehgetver(fid,version)

 integer*4 fid

 character*(*) version

The equivalent FORTRAN code for the example above is:
character*16 version

fid = swopen(“SwathFile.hdf”,1)

status = ehgetver(fid, version)

 2-173 170-TP-606-002

Get HDF File ids

EHidinfo
intn EHidinfo(int32 fid, int32 *HDFfid, int32 *sdInterfaceID)

fid IN: File id returned by SWopen, GDopen, or PTopen.

HDFfid OUT: HDF file ID (returned by Hopen)

sdInterfaceID OUT: SD interface ID (returned by SDstart)

Purpose Get HDF file IDs.

Return value Returns SUCCEED(0) if successful or FAIL(-1) otherwise.

Description This routine returns the HDF file ids corresponding to the HDF-EOS file
id returned by SWopen, GDopen, or PTopen. These ids can then by used
to create or access native HDF structure such as SDS arrays, Vdatas, or
HDF attributes within an HDF-EOS file.

Example To create a vdata within an existing HDF-EOS file:

char version[16];

fid = SWopen(“SwathFile.hdf”, DFACC_RDWR);

status = EHgetid(fid, &HDFfid, &sdInterfaceID);

vdata_id = VSattach(HDFfid, -1, “w”);

[Define vdata fields]

VSdetach(vdata_id);

SWclose(fid);

 Note that the file is opened and closed using the HDF-EOS open and close
routines.

 To access the SDS id of an HDF-EOS (unmerged) grid field:

fid = SWopen(“GridFile.hdf”, DFACC_RDWR);

status = EHgetid(fid, &HDFfid, &sdInterfaceID);

idx = SDnametoindex(sdInterfaceID, “GridField”);

sdsID = SDselect(sdInterfaceID, idx);

 The user can now apply the HDF SD interface directly to the field.

 2-174 170-TP-606-002

FORTRAN integer function ehidinfo(fid,hdffid,sdid)

 integer*4 fid

 integer*4 hdffid

integer*4 sdid

 2-175 170-TP-606-002

Convert EASE grid coordintes (r,s) to (longitude,
latitude)

GDrs2ll
intn GDrs2ll(int32 projcode, float64 projparm[], int32 xdimsize, int32 ydimsize, float64 upleft[],

float64 lowright[], int32 npnts, float64 r[], float64 s[],float64 longitude[],
float64 latitude[], int32 pixcen, int32 pixcnr)

projcode IN: GCTP projection code (GCTP_BCEA)

projparm IN: Projection parameters

xdimsize IN: xdimsize from GDgridinfo()

ydimsize IN: ydimsize from Gdgridinfo()

upleft IN: Upper left corner lon/lat of the grid in DMS format,

 values from GDgridinfo()

lowright IN: Lower right corner lon/lat of the grid in DMS format,

 values from GDgridinfo()

npnts IN: number of lon-lat points

r IN: array of EASE grid’s r coordinate

s IN: array of EASE grid’s s coordinate

pixcen IN: Code from GDpixreginfo

pixcnr IN: Code from GDorigininfo

longitude OUT: longitude array (decimal degrees)

latitude OUT: latitude array (decimal degrees)

Purpose Converts EASE grid's (r,s) coordinates to longitude and latritude.

Return value Returns SUCCEED(0) if successful or FAIL(-1) otherwise.

Description This routine converts EASE grid's (r,s) coordinates to longitude and
latiude in decimal degrees.

Example

 int32 gridid, npnts = 2;

 int32 projcode, origincode, pixregcode;

 float64 upleft[2], lowright[2];

 float64 projparm[13];

 2-176 170-TP-606-002

 float64 rcord[2], scord[2], lon[2], lat[2];

 int32 xdimsize, ydimsize;

 rcord[0]= 0.;

 scord[0]= 0.;

 rcord[1]= 691.5;

 scord[1]= 293.;

 status = GDprojinfo(gridid, GCTP_BCEA, 0, 0, projparm);

 status = GDgridinfo(gridid, xdimsize, ydimsize, upleft, lowright);

 status = GDpixreginfo(gridid, &pixregcode);

 status = GDorigininfo(gridid, &origincode);

 status = GDrs2ll(GCTP_BCEA, projparm, xdimsize,ydimsize, upleft,
lowright, npnts, rcord, scord, lon, lat, pixregcode, origincode);

FORTRAN integer function gdrs2ll(projcode, projparm, xdimsize, ydimsize,upleft,
lowright, npnts, r, s, longitude, latitude, pixregcode, origincode)

 integer*4 projcode, pixregcode, origincode

 real*8 projparm(*)

 integer*4 xdimsize, ydimsize, npnts

 real*8 r(*), s(*), longitude(*), latitude(*)

 real*8 upleft(2), lowright(2)

The Equivalent FORTRAN code for the example above is:

 parameter (GCTP_BCEA = 98)

 npnts = 2

 rcord(1)= 0.

 scord(1)= 0.

 rcord(2)= 691.5

 scord(2)= 293.

 status = gdprojinfo(gridid, GCTP_BCEA, 0, 0, projparm)

 status = gdgridinfo(gridid, xdimsize, ydimsize, upleft, lowright)

 status = gdpixreginfo(gridid, pixregcode)

 status = gdorigininfo(gridid, origincode)

 status = gdrs2ll(GCTP_BCEA, projparm, xdimsize, ydimsize, upleft,

& lowright, npnts, rcord, scord, longitude, latitude, pixregcode, origincode)

 2-177 170-TP-606-002

This page intentionally left blank.

 AB-1 170-TP-606-002

Abbreviations and Acronyms

AI&T Algorithm Integration & Test

AIRS Atmospheric Infrared Sounder

API application program interface

ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer

CCSDS Consultative Committee on Space Data Systems

CDRL Contract Data Requirements List

CDS CCSDS day segmented time code

CERES Clouds and Earth Radiant Energy System

CM configuration management

COTS commercial off–the–shelf software

CUC constant and unit conversions

CUC CCSDS unsegmented time code

DAAC distributed active archive center

DBMS database management system

DCE distributed computing environment

DCW Digital Chart of the World

DEM digital elevation model

DTM digital terrain model

ECR Earth centered rotating

ECS EOSDIS Core System

EDC Earth Resources Observation Systems (EROS) Data Center

EDHS ECS Data Handling System

EDOS EOSDIS Data and Operations System

EOS Earth Observing System

EOSAM EOS AM Project (morning spacecraft series)

EOSDIS Earth Observing System Data and Information System

EOSPM EOS PM Project (afternoon spacecraft series)

 AB-2 170-TP-606-002

ESDIS Earth Science Data and Information System (GSFC Code 505)

FDF flight dynamics facility

FOV field of view

ftp file transfer protocol

GCT geo–coordinate transformation

GCTP general cartographic transformation package

GD grid

GPS Global Positioning System

GSFC Goddard Space Flight Center

HDF hierarchical data format

HITC Hughes Information Technology Corporation

http hypertext transport protocol

I&T integration & test

ICD interface control document

IDL interactive data language

IP Internet protocol

IWG Investigator Working Group

JPL Jet Propulsion Laboratory

LaRC Langley Research Center

LIS Lightening Imaging Sensor

M&O maintenance and operations

MCF metadata configuration file

MET metadata

MODIS Moderate–Resolution Imaging Spectroradiometer

MSFC Marshall Space Flight Center

NASA National Aeronautics and Space Administration

NCSA National Center for Supercomputer Applications

netCDF network common data format

NGDC National Geophysical Data Center

NMC National Meteorological Center (NOAA)

 AB-3 170-TP-606-002

ODL object description language

PC process control

PCF process control file

PDPS planning & data production system

PGE product generation executive (formerly product generation executable)

POSIX Portable Operating System Interface for Computer Environments

PT point

QA quality assurance

RDBMS relational data base management system

RPC remote procedure call

RRDB recommended requirements database

SCF Science Computing Facility

SDP science data production

SDPF science data processing facility

SGI Silicon Graphics Incorporated

SMF status message file

SMP Symmetric Multi–Processing

SOM Space Oblique Mercator

SPSO Science Processing Support Office

SSM/I Special Sensor for Microwave/Imaging

SW swath

TAI International Atomic Time

TBD to be determined

TDRSS Tracking and Data Relay Satellite System

TRMM Tropical Rainfall Measuring Mission (joint US – Japan)

UARS Upper Atmosphere Research Satellite

UCAR University Corporation for Atmospheric Research

URL universal reference locator

USNO United States Naval Observatory

UT universal time

 AB-4 170-TP-606-002

UTC Coordinated Universal Time

UTCF universal time correlation factor

UTM universal transverse mercator

VPF vector product format

WWW World Wide Web

